ATP

Beyond Calories In and Calories Out

5459 views

Since the early 20th century, calories have been equated to health and energy. The assumption is that calories, no matter their composition, equal energy, and energy equals health. Strictly speaking, this is correct. The body will take whatever it is given, and to the best of its ability, convert it into cellular energy or adenosine triphosphate (ATP). That process produces heat and heat is the unit of change underlying the concept of calories. Mathematically, a calorie or kilocalorie (kcal), the unit used in food science, represents the heat or energy required to raise the temperature of 1 kilogram (kg) of pure water to 1° Celsius. This equation is used to calculate the heat content of food and determine the amount of heat energy produced as the food passes through the body. Another simple metric called the basal metabolic (BMR) is used to calculate the energy one requires to survive. From these two metrics, we get the calories in/calories out framework that dominates conversations about health and disease.

According to this framework, if the two numbers balance, we should have sufficient energy to meet the demands of daily living. If we consume more calories than we burn then, we should have excess energy, which can be used to increase one’s activity level or be stored as potential energy for use in the future. In today’s sedentary environment, it is usually the latter. Conversely, if we consume fewer calories than necessary, decrements in energy and weight loss should follow. In either case, energy is simply a matter of physics. Heat energy is transferred from one source – the food, to another – the body, or from the body to the environment at large, as one uses the energy in daily living and it dissipates.

This is the framework that has guided the medical profession, the food industry, and countless weight loss gurus for generations. To that end, it is of little to no concern what these calories are comprised of and very little thought is given to the endogenous processes underlying the generation of heat or energy. This framework allows us to represent health and illness mathematically. It is simple, recognizable, and easily understood, and perhaps that is why we hold dearly to it but is it accurate? What if there is more to this story? What if energy is not just a matter of heat transfer and what if the content of the calorie matters as much or more than the calorie itself? To answer that question, we need to determine what type of energy the body needs to survive and how that energy is derived.

What is Energy?

If energy is not a matter of calories, at least not in the sense that is portrayed, what is it then? In the body, energy comes in the form of ATP molecules, produced primarily by the mitochondria. In broad terms, ATP is the result of a series of reactions that combine oxygen with components of metabolized foods. Part of this process takes place in the cell but most of it takes place in the cell’s power plants, the mitochondria.

If all is going well, derivatives of fat, protein, and carbohydrates, the macronutrients contained in food, are shuttled into the mitochondria, through what is called the tricarboxylic acid (TCA) cycle (also called the Krebs or citric acid cycles), combined with oxygen, and through a series of reactions, collectively called oxidative phosphorylation (OXPHOS), produce ATP. From the oxidation of one glucose molecule, we get around ~30-36 ATP molecules. From one fatty acid molecule, we get over 100 ATP molecules, and from the amino acids, we get either substrates for the synthesis of other proteins, more glucose to metabolize and feed into the mitochondria (amino acids can be converted into glucose via gluconeogenesis), or another compound called pyruvate that may also be used by the mitochondria to make fuel or converted into lactate.

When things are not going as well or when quick energy is needed for certain functions, a number of extra-mitochondrial pathways, are used to break down the various macronutrient components to provide energy. There are two key pathways here. One is called glycolysis and the other is called the pentose phosphate pathway (PPP), which connects glycolysis with the TCA and OXPHOS and performs a few other important tasks like providing substrates for DNA and RNA synthesis. The PPP nets 1 ATP molecule per molecule of glucose, while glycolysis nets about 2 ATP molecules per molecule of glucose. A third pathway, used primarily in quickly replicating immune cells and cancer cells, involves shuttling glutamine, an amino acid, through the side door of the mitochondria to produce ~24 units of ATP per unit of glutamine. Severely stressed neurons use this pathway as well.

Which pathway is used to produce ATP may alternate according to to need, cell type, fuel type, micronutrient, and/or oxygen availability. Some cells metabolize a good portion of their energy in the cytosol using glycolysis while others rely almost exclusively on the OXPHOS in the mitochondria. This flexibility allows cells to adapt rapidly to changing circumstances. If one macronutrient is not available, energy is derived from another. When a micronutrient (vitamin or mineral) is not available, the products are diverted through other pathways, and when there is limited oxygen, glycolytic pathways will take over. All of this is meant to help the body metabolize different compounds and maintain energy homeostasis relative to environmental demands.

Different Energy Pathways for Different Cells

The body requires an enormous amount of energy to meet the demands of life. We effectively turn over our weight in ATP every single day. Every. Single. Day. That is absolutely remarkable. When we exercise, we produce even more – 0.5 to 1.0 kg per minute. Fully 95% of this energy comes from mitochondria, making mitochondrial fitness of the utmost importance. Many cells contain anywhere from 1000 to 2500 mitochondria and can represent from 25% to upwards of 60% of the cell volume. Accordingly, the average cell may use upwards of 10 billion units of ATP per day.

The production of ATP is critically important for survival and so its manufacturing of ATP is inherently dynamic and adaptable. The body will take whatever it is fed and turn it into energy using whichever pathway is available. So even when we feed ourselves garbage food, the body will do its best to manufacture some quantity of energy. The body does, however, have preferences. Importantly, different types of cells favor specific fuel types or pathways.

Skeletal muscles, for example, use fatty acids shuttled through the mitochondria for fuel when at rest but switch over to glucose, creatine, or lactate via glycolysis as exercise intensity and/or duration increase. Creatine, synthesized in the liver from glycine (and taken as a popular supplement in the athletic community), is part of a system that effectively recycles ATP in skeletal muscle during intense bouts of exercise. Lactate, originally believed to be a waste product, is actually an important fuel source. The ability to repurpose lactate, and metabolize it into ATP, whether via glycolytic pathways or via derivatives that will enter the mitochondria, is a major determining factor in forestalling fatigue for athletes and non-athletes alike.

You might be thinking, if glycolysis produces less energy per unit of glucose, why would the body choose to use it? Two reasons. The first is speed. Sometimes the energy is needed more quickly than can be provided by the mitochondria. So the body trades some capacity for speed. This occurs in fast-growing cells like the immune cells that need to replicate quickly during an infection. Similarly, high-energy situations like intense and quick bouts of exertion favor glycolysis. These are normal and adaptive. Secondly, glycolysis and its sister pathway, the PPP, also provide important components for cell building. If that is what is required, those are the pathways that will be used.

Unfortunately, glycolysis is also favored when the mitochondria are struggling. Here, molecules that would normally be shuttled into the mitochondria are diverted into other paths, and energy production is diminished. This is common in patients with metabolic disorders. The excess intake of sugars often paired with a lack of micronutrients overwhelms mitochondrial capacity, and as a result, much of the glucose remains in the cell and is either metabolized into what few ATP the cell can muster via glycolysis or shuttled towards other pathways that will act as waste management and expend rather than create energy. Cancer follows this pattern.

The continuously active heart cells require a huge amount of energy, approximately 6 kg of ATP per day to pump blood, most of which comes from the mitochondria. At rest, ~90% of the heart’s ATP comes from the oxidation of fatty acids in the mitochondria. During exertion, there is a slight shift in substrate preference and more glucose is used. Instead of a 90/10 split of fats to glucose, with activity, the split is closer to 60/40. In either case, these numbers show us that mitochondrial capacity and diet are incredibly important for heart health. Low fat, high carbohydrate diets, as have been recommended for decades, go against the fuel preference of a healthy heart. The result of this type of diet is evident in the cardiovascular disease associated with metabolic syndrome. With metabolic syndrome, which represents nothing more than dietary damage accrued over time, the mitochondria lose the capacity to metabolize fatty acids for ATP and instead must rely exclusively on glucose for energy. The resulting decrements in energy underlie many of the aberrant patterns in rate, rhythm, and pressure. The heart simply does not have the energy to pump effectively at rest but especially under stress. Importantly, with metabolic syndrome, dysfunction expands beyond the heart, and other cells will also lose the capacity to metabolize fatty acids, gradually shifting to a more glucose/glycolysis dominant metabolism.

The brain consumes a substantial amount of glucose to meet energy needs (5.6mg of glucose per 100g of brain tissue per minute), with neurons using up to 80% of that energy. While the brain represents only about 2% of the body’s mass, it consumes 20% of the daily energy budget. Since the brain and the nervous system effectively manage all aspects of survival, decrements in energy metabolism have deleterious effects not only on the range of behaviors typically attributed to the brain, thinking, memory, planning, speech, emotion, movement, and the like but also on the automatic or autonomic control of organ function. For example, the parts of the brain located in the back of the head, collectively called the autonomic system (the cerebellum and brainstem, together with the nerves that flow through the spinal cord to the various organs and tissues), are exquisitely sensitive to changes in energy availability. The brainstem especially, because it controls breathing and heart rate, the two most important functions for survival, requires massive quantities of ATP. When energy availability is compromised, heart rate, breathing, and other autonomically controlled systems become dysregulated leading to what is now called dysautonomia.

Although most of the brain’s energy is derived from the oxidative phosphorylation of glucose within the mitochondria, here too, lactate recycling, extra-mitochondrial pathways like the PPP and glycolysis also play a role. Additionally, as ketogenic diets have shown us, the brain may use ketones derived from fatty acids as a fuel source.

Even proteins may be used for brain fuel. This is a relatively new discovery and not widely appreciated, but a set of neurons in the hypothalamus called the orexin or hypocretin neurons (same neurons, different names), require amino acids to fire. Specifically, and in order of potency, glycine > aspartate > cysteine > alanine > serine > asparagine > proline > glutamine induce orexin firing. This is important because these neurons are the primary energy sensors in the brain. They are responsible for maintaining wakefulness, providing the motivation to eat, and monitoring brain energy levels as a whole. Mutations in these neurons are responsible for narcolepsy, but due to their energy-sensing role, any disruption in brain energy, may force sleep and induce anorexia. In other words, these neurons control survival functions that become disrupted when ill. Low concentrations of orexin/hypocretin lead to what is called ‘sickness behaviors’ – the behaviors that every organism exhibits when ill. These neurons are also involved in precipitating migraine implicating brain energy deficiency here too. Interestingly, unlike other neurons in the brain, where glucose spurs activity, in these neurons, glucose spurs inactivity, perhaps through associated inflammation. Glucose, particularly high glucose, will cause these neurons to stop firing, which may be perceived as excessive fatigue, an insatiable need for sleep, and when severe enough, coma.

Of interest, the most important amino acid for the proper activity of these neurons is glycine. Glycine is an essential amino required for protein synthesis and repair. It is also an excitatory neurotransmitter in its own right, affecting other neural systems. Glyphosate, the chemical used on virtually all commercially grown agriculture (and thus, consumed by all commercially grown livestock), is a glycine analog. That means that whenever we consume commercial foods where glyphosate-based herbicides are used liberally, we are substituting natural and endogenous glycine for a synthetic analog. This substitution has a long list of health-derailing effects. Another ill-effect to add to that list may be the inappropriate regulation and responsivity of the orexin/hypocretin neurons.

The Composition of Calories

The section above illustrates the necessity for providing a variety of whole and uncompromised foods to fuel the body and it should fundamentally shift how we perceive the energy capacity of different food types. The body requires a variety of fuel sources to function appropriately. From the calorie-focused perspective of energy, none of this matters. It is assumed that so long as there are ample calories, energy production will be maintained at sufficient levels. The makeup of those calories is inconsequential to ATP output. This is clearly incorrect. For even if we look only at the raw numbers of units of ATP per pathway, it is evident that the composition of the diet matters. Someone who eats a predominately carbohydrate-based diet will produce quantitatively fewer ATP molecules than someone whose diet derives the bulk of their calories from fats. Similarly, the ability to funnel macronutrient components through the mitochondria and to run OXPHOS will produce more energy than if one’s cells are stuck in the glycolytic pathways. When a diet is skewed towards one type of food, the pathways that rely on the other macronutrients will be impacted negatively and this, in turn, will affect the organs that prefer one type of fuel over another.

If we dig a little deeper and look at the composition of consumed carbohydrates and fats, there are even more differences to consider. For example, carbohydrates coming from refined sugars like high fructose corn syrup (HFCS) produce less ATP than those that come from whole and unadulterated grains, fruits, or vegetables. In fact, the metabolism of HFCS requires ATP rather than produces it, and as an added complication, a good portion of the metabolized products derived from HFCS never enter the mitochondria but are instead converted to triglycerides and stored as fat. Similarly, consumed fats that come from animal fats versus seed oils, differ in their ability to produce ATP. Soybean oil, an oil extracted from soybean seeds, not only incites inflammation and a host of other ailments, but it downregulates the enzyme that sits at the entry point to the mitochondria, effectively blocking glucose metabolism and shifting everything to glycolysis for a huge net loss in ATP production. Since all heavily processed foods contain both of these ingredients, consuming these products with any regularity diminishes, and likely damages mitochondrial function. The net result is poor energetic capacity.

And if we dig deeper still, we find that the thousands of chemicals used to grow, preserve, enhance, and package these products, leach nutrients, derail mitochondrial functioning, and in many instances, evoke mitochondrial cell death. Consuming these foods, as so many of us are inclined to do regularly (57% of kcal in the American diet is composed of ultra-processed foods), leads to poor mitochondrial function and limited energetic capacity. It is not just the processed foods that have become problematic though. Conventionally grown produce is less nutritious than what was grown a few decades ago before the adoption of glyphosate-based herbicides and the genetically modified plants designed to withstand these chemicals became so pervasive. As discussed previously, glyphosate-based herbicides like Roundup that are ubiquitous in conventional agriculture (1.8 billion pounds of glyphosate used annually, enough for 4 pounds per person per year), block glycine. These herbicides also chelate (remove) minerals from the soils and plants and from the humans who consume these products. Minerals like calcium, magnesium, zinc, and manganese, which, as we will see later, are critically important for mitochondrial function. Indeed, the original patents for glyphosate involved its industrial descaling capacity, exactly the mechanisms enacted in the human body. It should be noted though, that glyphosate is just one of the tens of thousands of chemical toxins we are exposed to daily, most of which have never been tested for safety but instead are assumed to be safe under the poor regulatory template called GRASgenerally recognized as safe.

Each toxin that we ingest (or breathe), requires an ATP-using response from the body, thus diminishing potential reserves by some quantity. One can imagine, how over time the repeated consumption of these types of products might fundamentally alter mitochondrial function and reduce ATP capacity. Importantly, since the gastrointestinal (GI) system provides the interface between consumed foods and the rest of the body and is responsible for the digestion, absorption, and metabolism of food-based nutrients and excretion of toxicants, reduced mitochondrial functioning e.g. reduced ATP in the GI system is doubly problematic. Not only is GI functioning disrupted and oftentimes damaged by these types of foods, but the ability to derive nutrition becomes impaired as well. It takes energy to make energy and it takes energy to extract and metabolize nutrients and excrete waste products. Commercial foods, while high in calories and non-caloric additives are low in energy. These foods lack actual nutrients and nutrients are what mitochondria need to make energy.

How Do We Fix This Mess

It should go without saying that we ought to eat better and avoid food and other toxins where we can, but the food landscape is such that this can be difficult, especially if one is already ill and reactive to many foods and/or other substances. In those cases, it is important to understand what it takes to make energy from food, determine what is potentially missing from your diet, and replenish accordingly. This is not easy and will take a fair amount of detective work on your part, but it is possible.

We briefly covered the macronutrients, here we will look into the micronutrients. Micronutrients are vitamins, minerals, and some metal ions. In generations past, before we sterilized the soils with chemicals and modified the plants to withstand those chemicals, one could consume a complement of these micronutrients so long as one had a reasonably balanced diet. It is here where the concept of calories made a little more sense when food was food and not some commercially derived concoction. That is no longer the case. The advent and escalation of herbicides, pesticides, and the slew of additives, preservatives and other noxious chemicals in the food chain have effectively stripped modern foods of nutritional capacity while retaining caloric content. This means, that for many people, supplements will be required. Which ones and what dosages, however, will vary significantly. For that reason, it is important to understand how the mitochondria work so that you may become your own expert.

Broadly, for foods to be metabolized into energy, for any macronutrients to enter the mitochondria and run OXPHOS, vitamins and minerals must be available to power the enzymes leading to and through the mitochondria. If there are insufficient vitamins and minerals both in general and relative to the concentration of macronutrients (high calorie, low nutrient foods) or demand (toxins, stressors, illness), the TCA cycle does not work, OXPHOS does not work well, the body has to shift to alternate pathways. With this shift, not only is ATP reduced but because these pathways burn dirtier, more endogenous pollutants, like reactive oxygen species (ROS), are released. The oxidative stress that ensues damages mitochondrial membranes, further taxing mitochondrial capacity. This damage simultaneously demands more energy to resolve while reducing the capacity to produce that energy. Over time, the ability to manufacture ATP becomes so disrupted and produces so much oxidative stress that the entire process of extracting and metabolizing foods into energy further damages the mitochondria. Eating the very nutrients the body needs becomes a stressor and the individual becomes stuck in a seemingly never-ending negative cycle of malnutrition causing more malnutrition with any attempts to rectify inducing negative reactions. This is the state I find many people with chronic illness in – in desperate need of nutrients but unable to consume them.

Let us look briefly at the micronutrients involved in deriving energy from proteins, carbohydrates, and fats. Below is a graphic from the book I co-authored with Dr. Derrick Lonsdale. While it focuses on thiamine, it lists many of the other nutrients required for mitochondrial metabolism. Notice that within each pathway, a variety of vitamins, minerals, and metal ions are necessary to power the multiple enzymatic reactions require to produce ATP. The B vitamins and magnesium, in particular, play an important role in the early phases of these processes.

Mitochondrial nutrients

If any of those micronutrients are missing or are in short supply, the enzymes requiring those nutrients will not work as efficiently and the capacity to produce ATP will decline. With that decline comes a slew of compensatory reactions that will reallocate resources based on energy availability. Those reactions frequently involve inflammation, altered hormone regulation, and other adaptive measures, as reduced energetic capacity is a signal to other mitochondria and other cells that something is wrong.

Nothing works without energy and energy is impossible without the vitamins and minerals that drive mitochondrial function. Not even respiration is possible. Cellular respiration, the most fundamental form of respiration, the activity that breathing itself, requires critical micronutrients. Oxygen cannot be used or trafficked appropriately creating a state of hypoxia. Hypoxia, I believe, is what drives most modern illnesses. So let us take a look.

Micronutrient Deficiency Driven Hypoxia: The Root of All Illness

Among the least well-recognized reactions to reduced nutrients is a type of hypoxia called molecular or pseudo-hypoxia. Here, unlike the typical obstructive hypoxia, nothing is blocking or preventing oxygen intake. What is missing are the micronutrients required to power key enzymes involved in oxygen utilization. Specifically, for cells to breathe and to utilize oxygen to produce energy, the mitochondria require adequate thiamine (vitamin B1), magnesium, and riboflavin (vitamin B2). Looking at Figure 1, you will notice that thiamine and its activating cofactor magnesium appear frequently throughout each of the pathways used to convert foods into energy. Indeed, they are what are called rate-limiting co-factors in these processes. Meaning that if their levels dip, everything else downregulates as well.

Importantly, thiamine, magnesium, and riboflavin, along with alpha-lipoic acid, are integral to the functioning of an enzyme complex called the pyruvate dehydrogenase complex (PDC). PDC sits atop the mitochondria and acts as a gatekeeper of sorts. With insufficient concentrations of these micronutrients, the metabolism of glucose into ATP is blocked. The metabolites of other macronutrients, after some processing also utilize the PDC as an entry point, and so they too will be blocked from entering the mitochondria. As a compensatory reaction, the mitochondria initiate a series of reactions that signal danger. Among them is the release of proteins called hypoxia-inducible factors or HIFs for short. Once released, HIFs then signal all of the other changes consistent with chronic illness like inflammation, hormone reregulation, altered immune responsivity, etc. These are meant to be short-term protective measures that reduce energy requirements and increase blood flow and oxygen to the cells. Unfortunately, because these are nutrient-driven reactions, they will not be resolved until the nutrients come back on board consistently. As a result, these patterns become entrenched, and therein lies the root of many chronic illnesses.

Symptomatically, early one and when this set of reactions is limited to specific tissues, injury and inflammation will appear regional to those tissues or organs.  The GI system, both because it sits at the interface between food consumption and nutrient absorption and because the microbes that inhabit the GI tract also require thiamine, will often show disruption first. The poor nutrient landscape not only impacts energetic capacity, disrupts peristalsis, and the movement of foods through the tract, but also shifts the microbial ecosystem towards more pathogenic microbes that adapt more easily to the nutrient-starved environment.

When nutrient deprivation goes on long enough and the HIFs become stabilized, not only do we see all of the compensatory reactions mentioned above, but when severe enough, we will see underlying molecular hypoxia manifest like a sensation that one cannot get enough oxygen, even though oximeter readings are perfectly normal. This is frequently referred to as air hunger.

Whatever the individual response, however, since mitochondria control life and death cycles at the cell level, ailing mitochondria that cannot manage these cascades effectively, die a messy, necrotic death that is highly inflammatory and immune reactive. What little intracellular ATP is available to power cell function is spit out of the cell and used as a danger signal to other cells. High levels of extracellular ATP are indicative of severe mitochondrial stress. When this happens, even less intracellular and intra-mitochondrial ATP is available to power basic survival functions, and importantly, to create more energy.

This begins the downward trajectory of chronic illness where one needs energy to make energy but simply does not have it; where one needs key nutrients to resolve the energy crisis but does not have the energy to metabolize those nutrients.

Resolution and Prevention

Ideally, we would prevent the downward trajectory of mitochondrial illness, but modern life, such as it is, presents innumerable threats to mitochondrial energetics. The biggest, of course, is poor diet. By focusing on the caloric content of foods, and the ease and speed at which we can prepare those foods, rather than their capacity to provide critical nutrients, we have missed the physiological purpose of eating – to provide energy to live and to function. In light of what is required to create energy from food, balanced macronutrients with an array of micronutrients, we must consider the composition of the foods we eat, especially when one is dealing with a chronic and seemingly treatment-refractory illness.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, and like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Photo by SHOT on Unsplash.

This article was published originally on July 19, 2022. 

Energy Medicine

9249 views

I have written many posts on Hormones Matter and have tried to answer the questions arising from each post. These questions and my answers have been so repetitive that I decided to try to make it clear what “energy medicine” is all about and why it differs from conventional medicine. It is only natural that the posted questions are all built on our present ideas about health and disease. What I am about to say is that the present medical model has outgrown its use. Therefore it is obvious that I must discuss what this means. First of all, why do we need a “medical model”? In fact, what is the difference between complete health and its lack? The Oxford English dictionary gives the definition of disease as “a serious derangement of health, disordered state of an organism or organ”

The American Model of Medicine

As I have said before, the present American medical model was aimed at making a diagnosis of one of many thousand described diseases. It was devised from the Flexner report of 1910 that was initiated by Rockefeller. Rockefeller wanted to make medical education adhere to a common standard, thus creating the present “medical model”. The Flexner report used the methodology of diagnosis that was current in Germany. This stated that the patient’s report to a physician is called “history”, involving the patient’s description of symptoms and their onset. From this, the physician may or may not have an idea what is wrong. The next part is the physical exam where a hands-on search of the patient’s body is made for evidence of disease. This is extremely complex when put fully into clinical operation and also may or may not provide clues to a diagnosis. The third operation is laboratory testing and it is this constellation of abnormal tests that provide scientific evidence for the nature of the disease. Each test has been researched and aside from one that is either positive or negative, others have a normal range reported in numerical terms. Perhaps, as an example, the test for cholesterol level is the best known. Each test has to be interpreted as to how it contributes to arriving at a diagnosis. Finally, the physician has to try to decide whether medical or surgical treatment must be offered. Please note that the surgical removal of a sick organ may be the signature of medical failure, for example, removing part of the intestine in Crohn’s disease, for it represents a missed opportunity to treat earlier in the disease process.

Laboratory Tests and A Drug For Every Disease

It is the constellation of symptoms described by the patient and the abnormalities found by the physical examination that constitute a potential diagnosis to formulate what laboratory tests should be initiated. It is the constellation of laboratory tests that may or may not provide the proof. There are problems with this. For instance, there may be test items in the constellation that create confusion, such as “it might be disease A or disease B. We are not sure”. Tests that are “borderline” positive are particularly confusing. The diagnosis finally depends often on who was the first observer of these constellations. For example a person by the name of Parkinson and another person by the name of Alzheimer, each described clinically observed constellations that gave rise to Parkinson’s disease and Alzheimer’s disease. Since they were first described, the pathological effects of each disease have been researched in painstaking detail, without coming to the conclusion of the ultimate cause. Finally, the pharmaceutical industry has indulged in complex research to find the drug that will reverse the pathological findings and produce a cure. Because this concept rides right through the objective, each disease is thought to have a separate underlying cause and a separate underlying cure in the shape of a new “miracle drug”. Witness the recent revival of a drug that was initially found to be useless in the treatment of Alzheimer’s disease. This revival depends on the finding of other pathological effects discovered in the disease, suggesting new clinical trials. When you take all these facts into consideration, it is a surprisingly hit and miss structure. For example, we now have good reason to state that a low cholesterol in the blood is more dangerous than a high one. Why? Because cholesterol is made in the body and is the foundation material for building the vitally important stress hormones. Cholesterol synthesis requires energy and is a reflection on energy metabolism when it is in short supply.

The Physicians Desk Reference, available in many public libraries, contains details concerning available drugs. Each drug is named and what it is used for, but often there is a note saying that its action is poorly understood. Just as often, there may be one or two pages describing side effects. In fact, the only drugs whose action is identified with cause are the antibiotics. The rest of them treat symptoms but do not address cause. Antibiotics affect pathogenic bacteria but we all know that the bacteria are able to become resistant and this is creating a problem for the near future. It is interesting that Louis Pasteur spent his career researching pathogenic microorganisms. However, on his deathbed it is purported that he stated “I was wrong, it is the defenses of the body that count”.

It must be stated that the first paradigm in medicine was the discovery of pathogenic microorganisms and their ability to cause infections. Many years were spent in trying to find ways and means of killing these organisms without killing the patient. It was the dramatic discovery of penicillin that led to the antibiotic era. I like to think that Louis Pasteur may have suggested the next paradigm, “assist the body defenses”.

Energy Medicine: A New Paradigm for Understanding Health and Disease

When a person is seen performing on a trampoline, an observer might say “hasn’t he got a lot of energy!” without thinking that this represents energy consumption. Energy has to be captured in the body and is consumed in the physical action on the trampoline. Many people will drink a cup of coffee on the way to work believing that it “creates” energy. The chemical function of caffeine stimulates action that consumes energy, giving rise to a false impression. Every physical movement, every passing thought, however fleeting in time, requires energy consumption. The person who has to drink coffee to “get to work”, is already energy insufficient. He/she can ill afford this artificial consumption of the available energy.

I am going to suggest that the evidence shows “energy medicine” may indeed be the new paradigm, so we have to make sure that anyone reading this is conversant with the concept of energy. In physics, “energy is the quantitative property that must be transferred to an object in order to perform work on, or heat, the object. Energy is a conserved quantity, meaning that the available energy at the beginning of time is the same quantity today. The law of conservation of energy states that “energy can be converted in form but not created or destroyed”. Furthermore, Einstein showed us that matter and energy are interconvertible. That is why the word “energy” is such a mystery to many people. What kind of energy does the human body require?

We are all aware that the electroencephalogram and the electrocardiogram are tools used by physicians to detect disease in the brain and the heart. If that means that our organs function electrically, then where does that energy come from? We do not carry a battery. We are not plugged into a wall socket and the functional capacity of the human body is endlessly available throughout life. The only components that keep us alive are food and water. Everyone knows that foods need to contain a calorie-delivering and a non-caloric mixture of vitamins and essential minerals. The life sustaining actions of these non-caloric nutrients is because they govern the process of energy capture by enabling oxygen consumption (oxidation). They also govern the use of the energy to provide physical and mental function.

The calorie bearing food, consisting of protein, fat and carbohydrate is used to build body cell structure. This is called anabolic metabolism. If body structure is broken down and destroyed, weight is lost and the patient is sick. This is called catabolic metabolism. In healthy conditions, food is metabolized to form glucose, the primary fuel.

Thiamine (vitamin B1), together with the rest of the B complex, governs oxidation, the products of which go into a cellular “engine” called the citric acid cycle. This energy is used to form adenosine triphosphate (ATP) that might be referred to as a form of “energy currency”. Without thiamine and its vitamin colleagues in the diet, ATP cannot be formed. Research for the next stage of energy production has yielded insufficient information as yet concerning production of electrical energy as the final step. The evidence shows that thiamine may have an integral part in this electrification process, although much mystery remains. Suffice it to say that we are electrochemical “machines” and every physical and mental action requires energy consumption.

Maybe the Chinese Were Right

In the ancient Chinese culture, an energy form called Chi was regarded as the energy of life itself. Whether this really exists or not and whether it is in some way connected to the auras purported to surround each person’s body is still conjectural. It would not be too absurd to suggest that it might be as yet an undiscovered form of energy and that it is truly a reflection of good health. My personal conclusion is that some form of electromagnetic energy is the energy that drives our physical and mental functions and that it is transduced in the body from ATP, the storage form of chemical energy. There is no doubt that acupuncture does work and certainly encourages the conclusion that the meridians described by the ancient Chinese thinkers are an important evidence of electrical circulation. There is burgeoning evidence that energy is the core issue in driving the complex process of the body’s ability to heal itself. The idea that the physician or anyone else that purports to be a “healer” is a myth, because we have the magic of nutrients that are capable of stimulating energy production as already described. The “bedside manner” is valuable because a sense of confidence and trust results in energy conservation. Remember the proverb “worry killed the cat”.

Illness and the Lack of Energy

As essentially fragile organisms, we live in a situation of personal stress. We are surrounded by micro-organisms ready to attack us. We have built a culture that is enormously stressful in many different ways, I turn once again to the writings of Hans Selye, who advanced the idea that we are suffering from “the diseases of adaptation”. He recognized that some form of energy was absolutely essential to meet any form of physical or mental stress. One of his students was able to produce the general adaptation syndrome in an animal by making the animal thiamine deficient. Energy metabolism in Selye’s time was poorly understood. Today the role of thiamine is well known. As I have described in other posts and in our book, the lower part of the brain that controls adaptive mechanisms throughout the body is highly sensitive to thiamine deficiency. Alcohol, and sugar in all its forms, both overload the process of oxidation. Although energy metabolism depends on many nutrients, thiamine is vital to the function of mitochondria and its deficiency appears to be critical. Because the brain and heart are the dominant energy consumers it is no surprise to find that beriberi has its major effects in those two organs. Symptoms are just expressions of oxidative inefficiency of varying severity. This is the reason why 696 medical publications have reported varying degrees of success in the treatment of 240 diseases with thiamine. Its ubiquitous use as a drug depends on its overall ability to restore an adequate energy supply by stimulating mitochondrial function. It is also why I propose that energy deficiency is the true root of modern disease.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Image by Gerd Altmann from Pixabay.

This article was published originally on November 19, 2019.

It’s Just ATP

1956 views

A while back, I wrote an article called ‘Just a Vitamin Deficiency‘ in an effort to dispel the notion that vitamin deficiencies are inconsequential to health. Truth be told, I have written dozens of similar articles hoping to change the tide of disregard. A few weeks after publishing the vitamin article I began this one. I wanted to address the growing body of research suggesting that ATP production is somehow immaterial to health and healing. The two ideas are connected, of course, because without vitamins and minerals we cannot produce ATP and without ATP we cannot catabolize nutrients from the foods we consume into more ATP. In health, medicine, and research, we seemed to have lost sight of these connections in favor of ever more complicated, and indeed, bifurcated explanations of our ill health.

I decided not to publish this article originally. It seemed redundant. Then, lo and behold, another article hit social media once again bemoaning how energy production was unimportant relative to all of the other cool functions overseen by the mitochondria.

The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information.

To be fair, the article is exceptionally detailed and very well done and I agree with the authors overall. They clearly demonstrate the complexity of mitochondrial function. Where I have a problem though, is in the failure to recognize the primacy of ATP over all other functions. This is among my top pet peeves in the world of mitochondrial research and medicine. It is as if the simple act of making energy is not sexy enough to consider in health or disease. While I understand that the mitochondria are central regulators of just about everything and I understand that there are dozens or more cool pathways that are managed directly by the mitochondria and their various signaling proteins, what I do not understand is how we seem to miss the fact that all of these functions, and I mean all of them, require ATP. Indeed, decrements in ATP capacity often initiate, and certainly sustain, many of the negative reactions we see outlined in the annals of mitochondrial research.

In this particular article, the authors concede that defects in oxidative phosphorylation (OXPHOS) impact all of the functions they so eloquently describe.

Because most biochemical reactions taking place within mitochondria are directly or indirectly linked to OxPhos and Δψm [mitochondrial membrane potential], including substrate and ion uptake, mtDNA perturbations have widespread consequences for several metabolic pathways.

For the uninitiated, OXPHOS is the process by which the metabolized products of the foods we consume are shuttled through various enzymatic reactions within the mitochondria to ultimately produce ATP. Defects in OXPHOS not only imperil energy production but also set into motion a cascades of negative reactions. From an article published earlier this year:

OxPhos defects trigger mtDNA instability and cell-autonomous stress responses associated with the hypersecretory phenotype, recapitulating findings in plasma of patients with elevated metabokine and cell-free mitochondrial DNA (cf-mtDNA) levels. These responses are linked to the upregulation of multiple energy-dependent transcriptional programs, including the integrated stress response (ISR).

OXPHOS is clearly important to mitochondrial function, and why wouldn’t it be? The synthesis of energy, of ATP, is the foundation of life. Think about it for a moment. Energy is fundamental to survival, not incidental, but fundamental. So, if energy wanes all of the functions dependent upon said energy become disturbed. Sure, there are other mechanisms by which a particular pathway may become unfavorably altered, and sure, delineating those mechanisms is important, but each and every one of those patterns requires energy to execute. The degree to which energy metabolism is inadequate to the task will influence, if not determine, the pattern of response, irrespective of the other variables that may be at play.

Breathing, for example, requires energy and not just the mechanical act of inhalation and exhalation, but the absorption, trafficking and metabolism of oxygen (O2). Of course there are a lot of factors that can impede breathing and oxygen management that seem outside of the purview of mitochondrial influence, but in reality, they are not. Energy or ATP is required at every step, including arguably the most important step – the utilization of O2 to create more ATP.

For O2 to be used, we need ATP.

For ATP, we need functional mitochondria.

For functional mitochondria, we need macro- and micronutrients.

Food provides the substrates that allow the mitochondria to produce ATP. It provides macronutrients like protein, fats, and carbohydrates, and perhaps most importantly, food provides the micronutrients to utilize that fuel. It’s that simple, or at least it used to be, before industrial food manufacturing so thoroughly decimated the food supply leaving vast swaths of the population starved for vitamins and minerals.

The ills of modern food production notwithstanding, without sufficient micronutrients to metabolize food into fuel and ultimately into ATP, alternate processing pathways are used; pathways that consume more ATP than they produce, and pathways that burn dirtier and emit more toxins than the body has the energy/ATP to deal with. This is the root of all metabolic disorders and more often than not, most modern illness, regardless of diagnosis.

So, while detailing all of the cool things that mitochondria are responsible for is important to understand, especially if we are ever to move medicine away from the compartmentalized model that it has so fixated on, let us not forget ATP is the basis of life.

Perhaps, in our investigations mitochondrial function, we ought to examine ATP capacity, not just output but capacity, and the pathways therein used to produce this ATP and manage the metabolism of foods. Perhaps then we will finally understand how critical the right nutrients are to mitochondrial health. Perhaps we also ought to look at how to support native mitochondrial function, not by blocking aberrantly altered pathways, but by providing the mitochondria with the most basic building blocks for optimal ATP production – nutrition. If we can get the mitochondria to more efficiently produce ATP, would that not then favorably influence everything else?

From that perspective, it seems obvious that ATP, the energy cells consume to do all of the things that cells do, would be fundamental to health, and to life itself, but like things that should be obvious to modern medicine, it is not. Sadly, it does not appear to be obvious even to those who research and treat mitochondrial illness. ATP capacity is not something we can ignore, but we do, and this, I believe, is one of the biggest failings of modern medicine and modern mitochondrial research.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter.  

Photo by Siora Photography on Unsplash.

Understanding Mitochondrial Energy, Health and Nutrition

9398 views

I live in a retirement community. In my everyday discussions with fellow residents, I find that the idea of energy metabolism as the “bottom line” of health is almost completely incomprehensible. Since my friends are all well-educated professional people, I came to the conclusion that few people really have an idea about energy. For example, we talk about people who indulge in physical sports being energetic, while people sitting behind a desk are classed as sedentary. What we fail to realize is that mental processes require even more energy than physical processes. Both physically and mentally active people consume energy, so it is obvious that some kind of attempt must be made to talk about energy as it applies to the human body.

Hans Selye and the Stress Response

I will begin by giving an outline of the work that was performed many years ago by a Canadian scientist by the name of Hans Selye. Originally he was a Hungarian medical student. Some of the teaching was done by presenting individual patients to the class of students. The professor would describe the details of the disease for each person. What interested Selye was that the facial expression of each patient appeared to him to be identical. He came to the conclusion that this was the facial expression of suffering, irrespective of the nature of the disease. He referred to this as the patient’s response to what he called “stress”. He decided to study the whole concept of stress. He immigrated to Canada and in Montréal he set up a research unit that came to be called “The Research Institute of Stress”.

Of course, Selye could not study human beings and his experiments were performed on literally thousands of rats. He subjected them to many forms of physical stress and detailed the laboratory and histological results. He found that each animal would begin by mustering the well-researched fight-or-flight reflex. If the stress was continued indefinitely, the metabolic resistance of the animal gradually decayed. He called this ability of the animal to resist stress the “General Adaptation Syndrome” and came to the conclusion that it was driven by some form of energy. If and when the supply of energy was exhausted, he found laboratory changes in blood and tissues that were listed carefully. Although extrapolating this information from animal studies, he ended up by saying that humans were suffering from “diseases of adaptation” and that they were the result of a failure to adapt to the effects of life stresses.

My addition to this is that it would have been better to describe them as “the diseases of maladaptation”, meaning that humans have to have some form of energy to meet life. If there is energy failure, disease will follow. The remarkable thing is that energy production in the human body was virtually unknown in Selye’s time, so his conclusion was a touch of genius. The mechanism by which energy is produced in the cells of the body is now well-known. We know that energy consumption is greatest in the lower part of the brain and the heart, organs that work 24 hours a day throughout life. The lower part of the brain that organizes and controls our adaptive capabilities is particularly energy consuming. So before we begin to think about energy as a driving force, let us consider what we mean by stress and how we adapt to it.

Human Stress: Surviving a Hostile Environment

We all live in an environment that is essentially hostile. We have to adapt to natural changes such as cold, hot, wet and dry. We are surrounded by enemies in the form of microorganisms and when they attack us, we have to set up a complex mechanism of defense. Add to this the possibility of trauma and the complexity of modern civilization, involving business and life decisions. We possess the machinery that enables us to meet these individual stresses, meaning that we are adapting. Health means that we adapt successfully and that is why “diseases of maladaptation” makes a lot of sense. Obviously, the key is that the machinery requires energy.

Energy Metabolism, Physics, and Chemistry

First of all, let us begin by trying to define energy. The dictionary describes it as “a force” and the only way in which we can appreciate its nature is by its effects. It is not a substance that we can see but the effects of light energy enable us to have vision. The old riddle might be mentioned; “Is there a sound in the forest when a tree falls?” The answer is of course that the only way that the resultant energy can be perceived is when it is felt by the human ear. Even that is not the end of the story, because the ear mechanism has to send a message to the brain where the sound is perceived. Thus, there is no sound in the forest when a tree falls. It is the perception of a form of energy, a force that impacts on the ear of any animal endowed with the ability to hear. Energy can be stored electrically in a battery or as heat energy in a hot water bottle, but the inevitable process is that the energy drains away. A hot cup of coffee cools. A battery gives up its stored energy and becomes just “another lump of matter”.

For example, if a stone is rolled up a hill, its natural tendency would be to roll down the hill again. Whatever force is being used to roll the stone up the hill is known as “potential energy”. In other words, there has to be a constant supply of energy as long as the stone is moving up a gradient against gravity. When it reaches the top, we say that the potential energy is being stored in the stone. It is the equivalent of electricity being stored in a battery. The “potential energy”, however, requires an electrical force to “electrify” the battery. The potential energy in the stone can be released by allowing it to roll down the hill and Newton called this kind of energy “kinetic” (the use of a force to produce movement). The force that is being used is of course the effect of gravity and the stone becomes stationary when it gets to the bottom of the hill. The use of gravity as the source of energy is simply wasted, but note that gravity has not changed. It is still available for use. Let us take a simple example of this energy being used for a purpose. Suppose that there is a wall at the bottom of the hill and a farmer wishes to create a gate. In a fanciful way he could use the stone to create a gap in the wall. The gap in the wall is the observable mark of the effect produced by consumption of kinetic energy.

The body consists of between 70 and 100 trillion cells, each of which has a special function. Each is a one-celled organism in its own right and in order to perform their function they need a constant supply of energy. This is developed by complex body chemistry. The “engines” in each cell are called mitochondria and one of their many different functions is to synthesize energy. The energy that is developed is stored in a chemical substance known as adenosine triphosphate (ATP) and in order to understand this a little more, perhaps we should think of the Newtonian analogy for comparison. The Newtonian hill is replaced by an electronic gradient and the stone by the chemical ATP

Of Mitochondria and ATP

Cellular energy is produced in the mitochondria by oxidative metabolism. This simply means that a fuel (glucose) combines with oxygen but, like any fuel, it has to be ignited. The best way to analogize that is to say that thiamine can be compared with a spark plug that ignites gasoline in a car. It “ignites” glucose. The resultant energy is used to add a phosphate molecule to adenosine three times to make ATP (the electronic gradient). We have “rolled an electronic stone up an electronic hill”. As the adenosine donates phosphate molecules, it becomes adenosine monophosphate (AMP) that must be “rolled uphill again”. As it is “rolling down the electronic hill”, it is transferring energy. Therefore, ATP can be thought of as an energy currency. Note that there must be a continuous supply of fuel (food) that must contain the equivalent of a spark plug (thiamine) in order to maintain an energy supply with maximum efficiency.

The loss of any one of a huge number of components in food that work in a team relationship with thiamine, lowers the energy maximum. That is why thiamine deficiency has been earmarked as the major cause of a disease called beriberi that has haunted mankind for thousands of years. Its deficiency particularly affects the lower part of the brain and the heart because of their huge energy demand. Since the lower brain contains the control mechanisms that enable us to adapt to the environment, as depicted above, it is easy to see that we would be maladapted if there is energy deficiency, just as Selye predicted. In fact, one of his students was able to produce a failure of the General Adaptation Syndrome by making his experimental animals thiamine deficient. It also suggests that a lot of heart and brain disease is really nothing more than energy deficiency that could be easily treated in its early stages. If the energy deficiency is allowed to continue indefinitely because of our failure to recognize the implications, it would not be surprising that changes in structure would develop and produce organic disease.

Health and Disease in the Context of Energy

With this concept in view, the present disease model looks antiquated. There are only three factors to be considered. The first one is obviously our genetic inheritance. If it is perfect, all it requires is energy to drive it. However, DNA is probably never perfect in its formation. It may not be imperfect enough to cause disease in its own right, but a slight imperfection would constitute what I call “genetic risk”, causing disease in association with a stressor such as an otherwise mild infection or trauma.

Suppose that a given patient died from an infection (think of the 2018 flu).The present medical model would place the blame on the pathogenic virulence of the virus without considering whether malnutrition played a part by failing to produce sufficient energy for the complex immune response. Therefore, the second factor to be considered is the perfection of the fuel supply and that obviously comes from the quality of nutrition. Stress (the viral attack or non-lethal trauma) becomes the third consideration, since we have shown that an adequate energy supply is required for adapting on a day-to-day basis. There is even a new science called epigenetics in which it has been shown that nutrient components can be used to upgrade genetic mistakes in DNA. A fanciful interpretation of these three factors, genetics, nutrition and stress can be portrayed by the use of Boolean algebra. This is a mathematical representation as interlocking circles. The area of each circle can be easily assessed, marking their relative importance. The interlocking area between any two of the three circles and that of the three circles together completes the picture. It becomes easy to perceive how a prolonged period of stress can impact health. The present flu epidemic may be an example of the Three Circles of Health in operation, explaining why some people have only a mild illness while others die. Could the appalling nutrition in America play a part?

Why Thiamine

The pain produced by a heart attack has always been a mystery in explaining why and how it occurs. The answer of course is that pain is always felt by sensory apparatus in the brain. The brain is able to identify the source of the signal as coming from the heart but cannot interpret the reason. I am suggesting that in some cases, the heart is having difficulties from energy deficiency and notifying the brain. A coronary thrombosis would introduce local energy deficiency, but other methods of producing energy deficiency would apply. It is logical to assume also that brain disease is a manifestation of cellular energy deficiency. That is why I had found that so many children referred to me for various mental conditions responded to megadoses of thiamine. It is also why I had found that so much emotional disease was related to diet and not to poor parenthood.

I recently came across a patient that I had seen many years ago when he was a child. He had a diagnosis of Tourette’s syndrome, made elsewhere. I treated him with megadoses of thiamine and his symptoms resolved completely. Medical skepticism would answer this by calling it a placebo effect, but since this effect is well-known, it must have a mechanism. For many years I have believed that therapeutic nutrition “turns on” this effect by enhancing cellular energy. A small group of physicians known as “Alternative Medicine Practitioners” use water-soluble vitamins, given intravenously, irrespective of the acceptable clinical diagnosis. For example, I remember a young woman who came to see me with a diagnosis of “Thrombocytopenic Purpura”. This disease is a loss of cellular elements known as platelets and it had resisted orthodox treatment for years. I gave her a series of intravenous injections of water soluble vitamins with complete resolution of the problem. I must end by stating that healing is a function of the body. The only way that a healer can be justifiably recognized is by supplying the body with the ingredients that it requires to carry out the healing process. Perhaps spontaneous healing, as for example initiated by religious belief, is an ability to muster those ingredients that are present, but hitherto unused.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Image by 422737 from Pixabay.

This article was published originally on February 14, 2018.

Problems With the Medical Model of Disease

6293 views

The use of the word model is supposed to describe the nature of disease as it differs from that of health. Hippocrates was the first person to offer a solution to the preservation of health by saying “Let food be your medicine and let medicine be your food”. Throughout most of history there was no model and treatment was based on largely futile ideas. The present age of medical thinking was ushered in by the discovery of disease producing microorganisms. The model became “kill the microorganism, the bacterium, the virus, the cancer cell”. If no microorganism or cancer cells could be found, the remaining diseases were long considered to be a mystery.

Recent research has advanced the model by discovering that the brain controls inflammation through the vagus nerve by the use of metabolites called cytokines. However, the present medical model still dictates that the various symptoms that signify loss of health are put together in collections. Each is considered to represent a particular disease that has to be named for diagnostic purposes and that a cure for each is to be found from detailed research. So we now have literally thousands of different diseases, often being called after the person who first observed a particular symptom/sign collection, such as Parkinson or Alzheimer. Each of the named diseases is supposedly recognized by a collection of laboratory tests that are “diagnostic”. What is even worse, is that this collection is often called a syndrome and the first observer has his/her name appended. From that time on, this particular collection is known as “Joe Soap’s syndrome”. Fortunately, there is change on the horizon as we gradually realize that the human body is a “machine” whose function is metabolic in nature.

The Stress of Life

When I was in active practice, I discovered that thiamine could be used as a “drug” for many of the situations that I encountered, seemingly irrelevant to the diagnostic category with which I was supposedly dealing. I was thought of by my colleagues as a medical heretic. Since it had long been known that thiamine deficiency was responsible for the disease called beriberi, I studied the history of the early attempts to find its cause. Beriberi had existed for thousands of years and was still largely a mystery at the end of the 19th century. I found how easy it was for the investigators to be misled. In Eastern cultures rice had been a staple for centuries. At that time, factories had been built in China in which buildings had been separated by a corridor. In the summer months the workers would congregate in them to take their lunch. As the sun moved around, it would shine on the congregated workers and several of them would come down simultaneously with the first symptoms of beriberi. The obvious conclusion for the investigators was that this was some kind of infection since several of them had succumbed at the same time. When it was found that thiamine deficiency was responsible, an explanation was required for this simultaneous incidence of the disease.

We now know that ultraviolet light is a source of stress. It can be concluded that the affected workers had been marginally deficient in thiamine. They were either asymptomatic or had mild symptoms attributed to other causes. The stress caused by sunlight had provoked symptoms of the disease simply because the required energy was unavailable to achieve homeostasis. This intriguing discovery caused me to seek the work of Hans Selye, whom I visited in Canada. As I have written in several posts on this website, he had determined from the study of rats that each form of stress had to be resisted and required energy. He called it the General Adaptation Syndrome (GAS) and offered the idea that human disease was a lack of sufficient energy required for adapting to the more severe environmental influences encountered on a daily basis. This included severe trauma and infections. The energy deficiency conclusion of Selye was later backed up by one of his students who was able to produce the GAS experimentally in a thiamine deficient rat without using any form of experimental stress.

It seemed to me to be obvious that I had to study the way energy is produced in the human body if I were to understand the reality of health and disease. In Selye’s time energy metabolism was poorly understood and it was a mark of his genius that enabled him to suggest that it was energy deficiency that caused the collapse of the GAS. The reason that all animals, including humans, are living is because they construct energy from food and this creates a chemical called adenosine triphosphate (ATP). From there, electrical energy has to be created and that is the energy that we use for functional activity. The transition from chemical to electrical energy is not precisely known but there is some evidence that thiamine in the form of thiamine triphosphate (note the parallel with ATP) plays an important part. This triphosphate form is exceptionally high in the electric organ of the electric eel, capable of producing a paralyzing shot of electrostatic electricity to zap its prey. The electric organ is an adaptation of a nerve ending just like ours. It is obviously important to understand that this is an evolutional adaptation and does not mean that we can produce a high energy output from our nerve endings. Indeed, the evidence is strongly in favor of the energy being in microvolts. We are identifying the electrical potential when we perform an electroencephalogram or an electrocardiogram and a recent test has been devised using the electrical potential of a person with Chronic Fatigue Syndrome (Open Medicine Foundation April 2, 2021).

Many of the people reading the information on this website are themselves patients seeking help for their misunderstood disease. The history recorded in their posts is repetitive and in each case their reported symptoms are usually thought to be bizarre by the physicians that have been consulted. In the present medical model a “real” disease is called organic and is marked by a series of abnormal laboratory tests. When these tests are reported to be normal, the conclusion is nearly always the same. The symptoms are considered to be imaginary in a person who is thought to be psychologically abnormal. They are referred to as psychosomatic and the patient is told that “it is all in your head”. It is always surprising to me that the physician seems to have the belief that the bizarre nature of the symptoms is generated in the patient’s brain without consumption of energy, that thought processes or imagination are not the result of energy consumption by brain cells.

Distorted Truth

The real trouble is that the disease model represents a distortion of the truth. To make a diagnosis, it is inherently necessary that some of the presently used laboratory tests must be abnormal. No thought is given to the possibility that energy deficiency in the brain might be the cause of the symptoms. Therefore no effort is made to obtain the right laboratory tests. It demands a totally different way of thinking about health and disease. People affected by this kind of brain energy deficiency disease are often working and living ostensibly normal lives but suffering greatly. They are in fact experiencing early beriberi, a disease that has a long morbidity and a low mortality. They can go on experiencing these symptoms for years, but if they are completely ignored as psychological misfits, one can easily imagine that permanent damage will develop. Perhaps Alzheimer’s and Parkinson’s disease are really reflections of this permanent damage and that there will never be a “cure” for them. Attention to relatively simple symptoms, usually diagnosed and treated as variable named conditions such as “allergy” may be the only way in which these named diseases can be prevented.

To give an example of this kind of thinking, I was confronted by a 12-year-old African-American girl with extremely severe asthma occurring in individual attacks. Physical examination revealed that her body was covered with “goose bumps”. Because of this I came to the conclusion that her autonomic nervous system was dysfunctional and the cause of her asthma. I had already come to the conclusion that thiamine deficiency caused the energy failure that resulted in dysautonomia and that sympathetic/parasympathetic imbalance could affect the bronchial tubes. Without further testing, I gave her thiamine in pharmacological doses. It resulted in a complete disappearance of the asthma. This patient, at the age of 30 years, contacted me to let me know that she had only experienced two mild attacks of asthma in her 20s.

Health Requires Energy

What is important to remember is that any situation involving physical or prolonged mental stress requires energy in the brain, used to organize the complex defenses of the body. The recent discovery by Dr. Marrs and myself that thiamine deficiency in America is common, suggests that brain energy is insufficient in many people. If and when they are attacked by a microorganism such as Covid-19 it is possible their symptoms and their continuation reflect brain energy deficiency. Consequently perhaps they are unable to adapt and overcome the stress of the viral attack. It also suggests that symptoms expressed by so called Longhaulers might be helped by the administration of pharmacological doses of thiamine.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

This article was published originally on April 7, 2021.

Image by Joshua Nicholas Vanhaltren from Pixabay.