prenatal folic acid autism

A Tale of Two Autisms: Folic Acid, Gene Silencing, and Estrogen

11922 views

In the current public discussion about autism, one could easily conclude that autism must be caused by either genetic mutations or vaccines. The media, besides portraying these positions as the only two possibilities, typically go even further by portraying them as mutually exclusive possibilities. This kind of distorted presentation crowds out discussion of other causation ideas.

Over the last 10 years I’ve developed my own theory of autism causation, a set of interconnecting biological mechanisms that, taken together, provide viable explanations for a substantial amount of autism data from multiple research areas. In summary, I am convinced that broad and indiscriminate folic acid supplementation practice has caused two concurrent and overlapping autism epidemics in certain susceptible subgroups of the population.

Part I: Early Pregnancy and Neural Tube Formation

The neural tube is the first well-defined structure of the fetal central nervous system, and it is formed by embryonic day 28. It was shown in 1980 that taking folic acid prior to conception and during the first few weeks of pregnancy prevented birth defects of the brain, spine, and spinal cord caused by the neural tube’s failure to close completely (called neural tube defects, or NTDs). In 1992, the U.S. Public Health Service recommended that all women capable of becoming pregnant consume 400 micrograms of folic acid per day, and in 1998, a folic acid food fortification program was implemented. It is estimated that about 1,300 NTD cases per year are avoided in the U.S. due to these measures.

More than 30 years after the initial groundbreaking NTD study, it was reported that prenatal folic acid supplementation was also associated with reduced risk of autism. One study found that folic acid reduced autism risk when it was taken during the first month of pregnancy, and another study confirmed folic acid’s early pregnancy protective effect, but found that it did not extend to mid-pregnancy. The results of these studies are fascinatingly counter-intuitive, given that both autism rates and prenatal folic acid uptake increased during the same time period. If folic acid does prevent autism, then it is puzzling that autism rates fail to track NTD rates; in other words, we would have expected to see a tremendous reduction in autism rates – certainly not the increase in autism rates that did occur – after the U.S. Public Health Service issued its recommendation and folic acid food fortification was implemented in the 1990s. This implies, at the very least, that folic acid’s relationship with autism is not as straightforward as it is with NTDs.

One extremely critical point is that most women in the U.S. are now supplementing with folic acid throughout pregnancy, despite the neural tube’s closure by embryonic day 28. Since there are plenty of substances – alcohol, rubella virus, and thalidomide, to name some better known examples – that have dramatically different effects on a fetus depending on when the exposure occurs, it’s not unreasonable to suppose that folic acid might have different potential effects on a fetus depending on the gestational period of exposure. Folic acid has extraordinary properties, and should not be dismissed as “just a vitamin.”

Part II: Mid Pregnancy and Neurogenesis

A Brief Summary of Normal Brain Development

In humans, neuron production begins on embryonic day 42, two weeks after neural tube closure, and is largely complete by mid pregnancy. Neurons form in a layer of tissue called the ventricular zone, and migrate away to form the brain’s structures and neural networks. The largest processing networks involve the neocortex, the layer of cells on the brain’s surface, and the subcortical nuclei, which lie underneath the neocortex and relay information to and from the neocortex. After migration, cortical neurons undergo extensive structural changes to form the pathways of the brain’s neural networks. They extend long fibers called axons to connect with other neurons, and grow arrays of fibers called dendrites for receipt of electrochemical information from other neurons.

Brain development depends upon complex cascades of molecular signaling involving many genes and gene products. The integrity of the entire process depends on the right elements appearing at the right times and in the right amounts, such that one genetic disruption can impact the entire downstream course of development.

Gene-disrupting mutations are not the only way that the molecular products of genes can be altered; disruptive epigenetic alteration of gene expression can also cause the normal cascade of developmental events to veer off course. Epigenetics is the molecular alteration of a gene’s expression without changing the underlying DNA sequence. These alterations to genes are usually heritable through cell division, although perhaps not from one generation to the next. The most widely understood way that epigenetic change can occur is via DNA methylation, where a methyl group forms a bond with cytosine in the DNA sequence, typically at a point in the sequence where cytosine is followed by guanine, called a CpG site. CpG islands are DNA regions with a high frequency of CpG sites; and hypermethylation of CpG islands, especially in promoter and enhancer regions, is highly correlated with silencing of the associated gene. In other words, too much methylation can render a gene just as nonfunctional as a disruptive mutation can.

Brain Development in Autism

A key factor in the widespread rejection of a causal link between vaccines and autism is the weight of evidence showing that autism is associated with a fundamental disruption in prenatal brain development.

Structural indicators of a disruption in brain development are very common in autism. These indicators include dysgeneses, heterotopias, altered cell morphologies, impairments in synapse formation and synapse plasticity, microcephaly, and macrocephaly. Studies have also found increased numbers of neurons in the prefrontal cortex and abnormal positioning of cortical projection neurons in subjects with autism, which suggests a disruption in neurogenesis between gestational weeks 7-20.

Researchers think that nearly one thousand genes may be involved in autism, with some of the most strongly autism-associated genes being those that are involved in neurodevelopment, synapse formation, and epigenetic functions. In fact, recent estimates suggest that 88% of high-risk autism genes are integral to early stages of brain development, regulating neurogenesis and early neuroblast differentiation, and that 80% of these genes also influence later stages of neurodevelopment such as synapse formation. It has been suggested that this strong association of autism with genes that impact multiple stages of brain development may indicate that autism occurs when the number and nature of gene-disrupting mutations involved in neurodevelopment reach a critical threshold of cumulative impairment in neural connectivity.

Beyond genetics, there is ample evidence that atypical epigenetic activity is also involved in autism. Post-mortem analyses show that tissues from certain regions of the brain are differentially methylated in autism, to the point that researchers have called these differences “profoundly distinctive” as compared to controls and have suggested that autism may be generally associated with a disruption to methylation-associated neurodevelopment. Specific genes found to be differentially methylated in autism include oxytocin receptor (OXTR), glutamate decarboxylase 1 (GAD1), Engrailed-2 (EN2), Reelin (RELN), and MECP2, all neurodevelopment-impacting genes, and the autism-associated genetic conditions of Angelman, Fragile X, and Rett Syndromes all involve disrupted epigenetic processes. Particularly fascinating results were obtained in a study of DNA methylation in peripheral tissue, where the subjects were three sets of monozygotic twins. In each twin set, one twin was diagnosed with autism and the other twin had milder autistic features that did not rise to the level of diagnosis. The twins with diagnosed autism had higher methylation levels than either their undiagnosed twins or their unaffected siblings, hinting at the presence of some environmental factor that increases both methylation activity and autism risk.

As noted above, hypermethylation is typically associated with gene silencing, and gene silencing can affect the entire downstream course of development. So what could cause a derailment of fetuses’ normal methylation activity, causing gene silencing during critical periods of brain development on a population-wide scale?

The answer to that question may lie in prenatal vitamins.

Bathing the Fetal Brain in Methyl Groups

The B vitamin folate is an extremely critical source of methyl group donors for DNA methylation, and folic acid is the synthetic version of folate. Standard obstetric protocol now recommends folic acid supplementation through the entire nine months of pregnancy, which means that the majority of pregnant women in the U.S. are consuming historically unprecedented amounts of methyl groups between gestational weeks 7 and 20, just when fetal genes are causing neurons to form, migrate, and differentiate.

It is known that dietary consumption of methyl groups impacts DNA methylation and gene expression. In animals, it is well established that administering folic acid to pregnant mice alters genetic expression in their offspring. In humans, researchers have found that maternal use of folic acid increases methylation in young children, whereas maternal low folate status is associated with both NTD and hypomethylation in the fetal brain. In sum, current research suggests that “in the rapid period of cell division occurring during fetal development, the level of methyl donors can have a significant impact on transcriptional activity that is maintained into adulthood.”

To explore possible effects of folic acid during mid-pregnancy, we can engage in a thought experiment based on the fairly noncontroversial idea that autism results from the cumulative effect of multiple genetic mutations impacting neurodevelopment. In particular, let’s consider a fetus with some genetic mutations that impact brain development, but with a cumulative effect still below the threshold of impaired neural connectivity that would cause autism. What happens if his mother takes folic acid throughout the neurogenesis period? And what if the fetus also has a common genetic impairment in folate metabolism, perhaps causing folic acid to accumulate in the womb? One possible progression of events might develop as follows:

  1. The mutated genes cause some errors in brain development.
  2. Because of the fetus’s impaired folate metabolism, excess folic acid accumulates and causes abnormally high methylation activity during brain development. This causes some unmutated genes to become hypermethylated, which renders these genes essentially non-functional. More developmental errors occur because of this gene shut-off.
  3. Downstream brain development is altered by both the mutations and the inactivated genes. Hypomethylation of certain downstream genes could be a possibility, if either the mutated genes or the inactivated genes functioned to create molecules involved in epigenetic processes.
  4. The autism threshold is reached as neural connectivity becomes severely impaired by both genetic and epigenetic malfunctioning. Perhaps neither the genetic mutations nor the hypermethylation would have been sufficient to cause autism in isolation, but in combination they do.

If the above sequence of events were to occur on a population-wide level, it might (a) cause an overall rise in autism rates in supplemented populations, and (b) lead to a finding that genetic mutations involving brain development are particularly common in autism, because the presence of these mutations in utero would put a fetus closer to the autism threshold than a fetus without such mutations.

In fact, children with autism do present with significantly more de novo, gene-disrupting mutations than their unaffected siblings.

Part III: Mid Pregnancy and Estrogen

In mammals, male fetuses go through a period of development where fetal testosterone enters the developing brain, converts to estradiol (an estrogen), and stimulates neuronal estrogen receptors. This period of development, called sexual differentiation, essentially masculinizes the male brain. In humans, it is thought that fetuses are sensitive to estrogen-sensitive brain growth in mid-gestation.

In 2011, I published a paper describing, I believe for the first time, the large overlap between estrogen-sensitive cognitive functions and functions impacted in autism, including anxiety, motor deficits, stereotyped and repetitive movements, epilepsy, hyperactivity and attention deficit, disrupted pain recognition, deranged serotonin system, atypical memory function pattern, and atypical visual-spatial information processing. If we speculate that some form of autism results from excessive estrogen-sensitive brain growth, then male fetuses, with their generally higher baseline level of such growth, would logically be more susceptible than females to this form of autism. This could explain the high ratio of boys to girls in autism.

In my article for Hormones Matter last year, I described autism-linked environmental factors that are also linked to estrogenic effects, including hypothyroidism, which is associated with breast cancer; high levels of fetal testosterone, which is relevant because high levels of testosterone would be expected to lead to increased estradiol synthesis; exposure to pyrethroid insecticides, which are known to be estrogenic; maternal usage of selective serotonin reuptake inhibitors (SSRIs), a type of antidepressant that has also been found to be estrogenic; and maternal vitamin D deficiency, a condition also associated with increased risk of breast cancer.

Folic acid is known to stimulate estrogen-sensitive growth in mammals when in the presence of estrogenic substances. It may therefore be the case that excessive quantities of folic acid in the womb during mid-pregnancy, coupled with an estrogenic exposure, is a second path to autism.

Part IV: Two Autisms

Notably, the SSRI and pyrethroid insecticide studies referenced above both found that third trimester exposures were associated with autism. This is well after most neurogenesis is complete. I would suggest that this may demonstrate two distinct risk periods for autism, perhaps even corresponding to two different, yet frequently overlapping, types of autism.

We can imagine that both male and female fetuses with neurodevelopmental genetic mutations might be at greatest risk for hypermethylation-induced autism during neurogenesis. We can also imagine that males with prenatal exposure to estrogenic substances might be at greatest risk for estrogen-induced autism in later pregnancy. The first group might be at greater risk of falling on the low functioning, severe end of the autism spectrum, given the fundamental alteration to brain architecture, whereas the latter group might be more likely to develop a type of high-functioning autism. Accordingly, we’d predict that the ratio of hypermethylation-induced cases to estrogen-induced cases would be markedly higher in females, such that females with autism would be predicted to generally present with more gene-disrupting de novo mutations than males with autism. In fact, this is consistently reported.

Common mutations causing impairment in folate metabolism would be predicted to increase risk for both hypermethylation-induced and estrogen-induced autism. We don’t typically test for these kinds of mutations in fetuses or pregnant women, however, so by the end of pregnancy some fetuses might be swimming in retained folic acid. Up until recently this was not thought possible, but in 2016, researchers from Johns Hopkins found that it was. Moreover, this study found that mothers who retained very large amounts of both folic acid and vitamin B12 in their bloodstreams shortly after birth were 17.6 times more likely to give birth to a child with autism, suggesting that maternal and/or fetal impairments in the folate cycle (which uses vitamin B12 as a co-factor) may be risk factors for autism in supplemented populations. This is very concerning, given that approximately 60% of the population has some degree of impairment in folate metabolism.

Part V: Vaccines

It is important to emphasize that the theory outlined in this article predicts vaccine reaction to be associated with autism.

As I discussed in my first article for Hormones Matter, the kinds of genetic mutations associated with impairment in folate metabolism are also associated with lowered glutathione levels, oxidative stress, and difficulties in fighting infections, resolving inflammation, and removing toxins like metals from the bloodstream. There would thus be an anticipated correlation between generalized detoxification disability and both types of autism. Moreover, eight studies have demonstrated that autism is associated with disrupted genetic expression (but not genetic mutations) with respect to pathways involving inflammation and immunity. This could perhaps indicate that these pathways are associated with autism only because they are vulnerable to hypermethylation via folic acid, not because they play a role in causation. In any case, the administration of vaccines to a child with disrupted inflammation and immunity pathways may have any number of unknown negative consequences – both in the womb and after birth.

Part VI: Conclusion

Folic acid appears to be critical to the earliest phase of human development, as we can see the effects of insufficient early methylation in terminated fetuses with NTDs, and we’ve learned that early supplementation appears to be protective against autism. After embryonic day 28, however, we’re no longer taking folic acid to prevent NTDs. The neural tube has either closed or failed to close by that point, and the fetus has moved onto new stages of development.

Taking folic acid after embryonic day 42, when neurons start forming, may unnecessarily expose developing fetuses to excessive amounts of methyl groups, in some cases disrupting the delicate genetic machinery that produces the molecular products necessary for normal brain growth. And taking folic acid into late pregnancy may aggravate any negative effects of environmental estrogenic exposures, in a world where environmental estrogens are increasing in quantity at an alarming rate. As a standard operating protocol, then, population-wide folic acid supplementation after neural tube formation seems likely to pose an unnecessary risk, especially to fetuses with extraordinarily common mutations that impact folate metabolism.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter.

Image credit: love_K_photos / Flickr; CC 2.0; tinting added.

Exploring the Nexus Between Estrogen, Autism, and Vaccine Injury

5675 views

In 2011, I published a paper that pointed out the large overlap between estrogen-sensitive cognitive functions and cognitive features that are commonly impacted in autism (1)(2)(3). These overlapping factors include anxiety (4), motor deficits (5), stereotyped and repetitive movements (6), epilepsy (7), hyperactivity and attention deficit (8), disrupted pain recognition (9), deranged serotonin system (10), atypical memory function pattern (11), and atypical visual-spatial information processing (12). From this data and what is known about animal physiology, I developed a theory that excessive estrogen-sensitive brain growth during gestation could cause a high-functioning form of autism.

The brains of lower mammals are most receptive to estrogen-sensitive growth during the gestational period of sexual differentiation, when the fetus’s testosterone enters the developing brain, converts to estradiol, which is an estrogen, and proceeds to stimulate estrogen receptors. Counter-intuitively, it is this estrogen-sensitive development that makes the male brain masculine (13). The human brain is sexually dimorphic in the same areas known to be rich with hormone receptors in animals, suggesting that human development may proceed similarly (14).

If some estrogen-sensitive brain growth is necessary for a human brain to become masculine, then there should be a point where this growth becomes excessive and atypical. Male fetuses would logically be more susceptible than females to this excessive growth, due to their relatively higher baseline level of estrogen-sensitive brain development. And if neurodevelopmental autism results after a specific threshold of estrogen-sensitive brain growth is achieved, it would stand to reason that males would be at greater risk than females for developing this form of autism.

Quite a few studies support a role for estrogen in autism, albeit inadvertently. Hypothyroidism, for example, has been associated with breast cancer as well as increased risk of having an autistic child (15)(16). Autism is also associated with high levels of fetal testosterone, which is relevant because high levels of testosterone would be expected to lead to increased estradiol synthesis (17). One study found a link between autism and mothers’ residential proximity to agricultural application of pyrethroid insecticides during pregnancy, and pyrethroid insecticides are known to be estrogenic (18)(19). Another study found a link between autism and maternal usage of selective serotonin reuptake inhibitors (SSRIs), a type of antidepressant that has also been found to be estrogenic (20)(21). Still another study found a link between autism and maternal vitamin D deficiency, a condition also associated with increased risk of breast cancer (22)(23).

Despite all of the evidence of a link between estrogen and autism development, clearly not all pregnant women who are exposed to pyrethroid insecticides, take SSRIs, or have vitamin D deficiency give birth to autistic children. Why would only some pregnancies be susceptible to excessive estrogen-sensitive brain growth? The answer to this may lie with common genetic impairments that affect the metabolism of folic acid, which has been known since the 1940’s to increase estrogen-sensitive tissue growth in mammals being treated with synthetic estrogen (24).

The Trouble with One-Size-Fits-All Prenatal Vitamins

Folic acid, the synthetic form of the B-vitamin folate, has gradually become a ubiquitous prenatal supplement ever since it was discovered in 1980 to prevent the occurrence of neural tube defects (NTDs). Even though folic acid only prevents NTDs when taken prior to neural tube closure, which occurs four weeks after conception, obstetricians in the United States now inexplicably recommend folic acid throughout the entire nine months of pregnancy (correspondence with author of 25). This may be unwise, because genetic mutations that impact folate metabolism are both exceedingly common and rarely discovered. Such mutations would cause difficulty in metabolizing the large amount of folic acid in most prenatal vitamins.

Folate metabolism is a key part of a critical metabolic process, the methylation cycle, which produces methyl groups that are necessary for numerous biochemical reactions in the body. Vitamin B12 is also required in the methylation cycle. In most commercially available vitamins, unfortunately, B12 is in the form of cyanocobalamin, which requires a methyl group to participate in the methylation cycle. Cyanocobalamin’s demand for methyl groups would therefore place further strain on a genetically impaired methylation cycle that is already struggling to metabolize folic acid, perhaps leading to an accumulation of abnormal amounts of both folate and B12 in the bloodstream. Does a condition of accumulated folate and B12 actually exist in pregnancy? It does indeed – and last year it was associated with an extremely high risk of autism.

In May 2016, Johns Hopkins released the results of a study that measured the levels of folate and B12 in women’s bloodstreams shortly after giving birth. The study involved almost 1,400 mother-child pairs from births occurring between 1998 and 2013. The researchers found that women with very high (more than four times adequate) levels of folate in their blood had twice the risk of having an autistic child, women with very high levels of B12 had triple the risk of having an autistic child, and women with very high levels of both folate and B12 had 17.6 times the risk of having an autistic child (26). Several science journalists and medical news commentators quickly downplayed these findings as being premature, without consideration of possible flaws in current supplementation practice.

The mothers in the Johns Hopkins study were tested for mutations in MTHFR, the gene that provides instructions for making an enzyme critical to folate metabolism. Autism risk did not change based on maternal MTHFR genotype. The participants’ offspring were evidently not genotyped, however, so it may still be reasonable to speculate that the significant vitamin retention discovered by the researchers might have been due to either (a) MTHFR mutations being present in the fetuses, or (b) some combined effect of maternal and fetal mutations. In addition, there are a number of common methylation cycle mutations besides variations in the MTHFR gene that could impact overall metabolic efficiency. In any event, the participants were drawn from a low income population, which suggests that these women may have only had access to relatively inexpensive vitamins containing folic acid and cyanocobalamin. In sum, we have reasonable grounds to suspect that a combination of standard prenatal vitamins and unknown methylation mutations may be the reason why some women would accumulate excessive levels of folate and B12 in their bloodstreams during pregnancy.

Folic Acid’s Forgotten Relationship to Estrogen-Sensitive Growth

One reason that high concentrations of folic acid in a pregnant woman might be problematic is that there is evidence of folic acid acting like a growth magnifier for estrogen. In a series of experiments beginning in the early 1940’s, it was discovered that estrogen-sensitive oviduct growth in chicks was significantly enhanced when folic acid was present in conjunction with the synthetic estrogen stilbestrol (24). Excessive folic acid in the human bloodstream might therefore magnify the effects of estrogenic chemicals in our modern environment – like SSRIs – or magnify the effects of physical conditions that appear to increase estrogen-sensitive growth on their own, like vitamin D deficiency. And perhaps such magnification can cause an excessive amount of estrogen-sensitive growth in a developing human brain just as readily as it does with a growing chick oviduct.

If excessive estrogen-sensitive brain growth does cause neurodevelopmental autism, then the severity of this kind of autism would likely depend on a complex interplay between mother and child’s genetic capacity to metabolize folic acid, the kinds and quantities of vitamins taken during pregnancy, the sex of the fetus, the extent of maternal exposure to factors that promote estrogen-sensitive growth, and the gestational periods in which these exposures occur. A very wide range of outcomes would thus be expected, even amongst genetically similar children.

Superimposed against the variation in autism outcomes would be a potentially wide variation in methylation impairment of the fetus, leading to a highly heterogeneous group of children with varying degrees of neurodevelopmental autism as well as varying degrees of methylation impairment. This assertion is supported by the consistent finding of methylation-related mutations amongst autistic children (27). Adding to the complexity of clinical presentation, some children might develop neurodevelopmental autism without any methylation mutations at all, whereas other children with methylation mutations might escape development of autism because the requisite conditions were simply not present in the womb when estrogen-sensitive brain growth was occurring.

The methylation cycle produces glutathione, and an impaired methylation cycle would lead to lowered glutathione levels and oxidative stress. This, in turn, would cause difficulty in fighting infections, resolving inflammation, and removing toxins like metals from the bloodstream. All of these conditions have been reported in autistic children, in addition to atypical concentrations of glutathione metabolites (28)(29)(30)(31)(32)(33). Vaccines contain metals, and there exists a growing association between methylation impairment and possible predisposition to vaccine injury (34)(35). The estrogen theory would therefore predict autistic children to have more adverse vaccine reactions and related medical co-morbidities than would be predicted to occur by chance alone. The theory would also suggest that post-vaccination regressive autism, occurring suddenly in a child with no prior developmental concerns, may not actually be autism, but may instead be autism-mimicking brain injury (encephalopathy) caused by impaired detoxification pathways failing to purge certain vaccine ingredients. Encephalopathy has, in fact, been repeatedly compensated as a vaccine injury by the federal Vaccine Injury Compensation Program (36).

The Complications of Multiple Avenues of Causation

In closing, it is important to note that the estrogen theory suggests that autism might be a naturally occurring human condition, which has increased in incidence only because (a) widespread folic acid supplementation has magnified the chances of developing it, and (b) the number of estrogenic chemicals in our environment has been, and still is, on an ever-increasing trajectory. It is also important to note that the estrogen theory contemplates genetic susceptibility to autism coming from what might be an entire universe of genetic mutation combinations that compose, affect, or depend upon the methylation cycle, in addition to genes that affect hormone production. Research will never uncover a consistent genetic liability if this is true. In addition, if a multitude of estrogenic substances and conditions are the underlying cause of neurodevelopmental autistic traits, and if vaccines are the underlying cause of regressive encephalopathy and associated medical co-morbidities, then epidemiological studies of prenatal folic acid consumption will likely result in as much uncertainty as genetic studies have.

We Need Your Help

Hormones Matter needs funding now. Our research funding was cut recently and because of our commitment to independent health research and journalism unbiased by commercial interests, we allow minimal advertising on the site. That means all funding must come from you, our readers. Don’t let Hormones Matter die.

Yes, I’d like to support Hormones Matter.

Internet Archive Book Images, No restrictions, via Wikimedia Commons

This article was published originally on Hormones Matter on May 25, 2017.