sugar thiamine

Dysautonomia and Hypoxia

15261 views

Every profession has its jargon that enables its practitioners to communicate relatively easily but is incomprehensible to those outside the indicated profession. This is most true in the medical profession, so I am about to explain a disease condition that has become extraordinarily common. I will begin by defining the word dysautonomia. “Dys” is a prefix meaning abnormal and “autonomia” refers to the autonomic nervous system. The autonomic system is the part of the nervous system that controls autonomic functions and behaviors that ensure survival. This includes, heart rate, respiration, digestion, temperature, even libido.

The autonomic system operates largely involuntarily and without conscious consideration. Many people are not aware that we have two types of nervous system. The one that we all understand is called “voluntary”, enabling us to carry out willed actions. This nervous system is controlled by the upper part of the brain known as the cortex, the latest part to be evolved, capable of thought and giving us those human abilities that are unique within the animal kingdom. In contrast, the lower part of the brain controls an involuntary “messenger system” that enables us automatically to adapt to the conditions of environment that we meet on a daily basis throughout life. The messenger system does not think. It acts automatically. The autonomic system is a “three channel system” that sends and receives signals to and from all parts of the body.

The Three Channels of the Autonomic System

The first channel connects with a bunch of glands known as the endocrine system. These are the glands that produce hormones, messengers borne by the blood to the body organs. This is a complex messenger system that adjusts, influences and modifies behavior. The other two channels are known as the sympathetic and parasympathetic systems. Between them, they provide direct communication that enables a given organ to react and participate in the symphony of adaptation. All work in a coordinated manner. Thus, the action of the autonomic nervous system, either by direct communication with an organ or by means of releasing a hormone, activate or deactivate all the organs in the body selectively.

Sympathetic System. This is best thought of as the action stimulating mechanism. Its best known reflex is known as “fight-or-flight”, activated by any form of mental or physical stress or threatened danger. It will accelerate the heart, deactivate the intestine, produce a sense of anxiety or panic, dilate the pupils in the eyes and raise the blood pressure, all things that you desire to happen if you are either fighting or fleeing from an enemy. It is designed for short-term action and consumes energy at an accelerated rate, particularly in the brain. It is important to note that this is a reflex, not a thought process. It is activated by a visual, auditory or tactile stimulus that is interpreted as danger. I think of this as a “stress input” that is answered by either physical or mental action in some form of self-preservation.

Reading a telegram that provides bad news triggers an emotional reflex that does not necessarily require physical action but is an obvious source of stress and the mental response is sympathetic and energy consuming. It may well induce accelerated heart rate, pallor and pupillary dilatation as a modification of a fight-or-flight reflex. Emotions are reflex, engineered by the lower brain and programmed according to the nature of the incoming stimulus perception. This in turn stimulates the thought processes of the higher brain that is capable of modifying the reaction. Sympathetic action of this nature is also activated by the release of adrenaline from its appropriate gland “and gives rise to what is sometimes called the ”adrenaline rush”.

Parasympathetic System. This is best thought of as “the rest-and-be-thankful” mechanism. It will decelerate the heart, activate the intestine, produce a sense of peace, constrict pupils of the eye and lower blood pressure, the very opposite of that produced by the other system. Our primitive ancestor could now roll a stone over the mouth of his cave and carry out the functions of the body after he has escaped from danger. He can now sleep, eat, indulge in bowel activity and experience a sense of peace. This also is not a thought process.

Dysautonomia: Autonomic Chaos

It is obvious that if the sympathetic and parasympathetic systems were activated together there would be chaos. Reflex sympathetic action under normal circumstances is balanced by a withdrawal of the parasympathetic action and vice versa. Thus, for example, accelerated heart rate is partly produced by withdrawal of the parasympathetic at the same time as it is accelerated by the sympathetic. This coordination is computed by the lower part of the brain. Under normal circumstances its action is modified by the upper brain that provides willpower under what might be called “advice and consent”. On the other hand, under urgent necessity, when danger is life threatening, the sympathetic system takes over the action completely, explaining why a soldier in battle may not be consciously aware that he has lost a finger until the action is completed.

If the reflex coordinated mechanism of the autonomic system is lost for any reason, it is referred to as dysautonomia. A medical textbook entitled “Dysautonomia” was edited by Sir Roger Bannister, then a London physician who was the first athlete to run the four-minute mile. The book describes many examples of this condition and deals with the genetic aspect. It never addresses the subject of nutrition, an oversight that introduces the clinical blindness of the modern physician to nutritional deficiency disease. This is in spite of the fact that the best example of dysautonomia is beriberi, long known to be caused by deficiency of thiamine (vitamin B1) by the ingestion of empty carbohydrate calories.

Hypoxia and Pseudo-hypoxia in Dysautonomia

The word hypoxia refers to lack of oxygen. Its most devastating effect is in the brain and particularly the lower brain that never sleeps. This is because the cells in that part of the brain have a heavy requirement for oxygen. As we all know, oxygen is delivered to all the 70 to 100 trillion body cells by the bloodstream and they consume it in the synthesis of energy. This consumption of oxygen is in turn dependent on the presence of thiamine and other vitamins. A deficiency of thiamine therefore produces the same clinical effect as hypoxia. For this reason, its deficiency causes what is sometimes known as pseudo-hypoxia (pseudo meaning false).

Since the lower brain controls the autonomic nervous system, we can now see how thiamine deficiency results in dysautonomia. Of course, as we all know, a complete lack of oxygen means death. We are here discussing the effects of a mild to moderate hypoxia or pseudo-hypoxia. The so-called TIA (transient ischemic attack) is an example of hypoxia because of a temporary failure of blood delivery to the brain. In most cases it is probably a brief contraction in the muscular wall of a major artery resulting in constriction of the artery. The irony is that I believe a common mechanism for TIA may involve arterial artery spasm from magnesium deficiency. It might well be obviated by taking a supplement of magnesium as a preventive. Thiamine and magnesium deficiency both produce the same effect by preventing the consumption of oxygen, thus stopping energy synthesis: hence the term pseudo.

Clinical Effects of Pseudo-hypoxia

There are many papers published in the medical literature in which a particular disease (for example lung cancer) is associated with dysautonomia. Each one of these manuscripts offers a case report in which the cause of this interesting but baffling association is unknown. My hypothesis is that pseudo-hypoxia gives rise to the dysautonomia whose symptoms are not recognized for what they represent, are ignored, or treated symptomatically and lead eventually to more cellular damage within a body organ that becomes an organic disease. If recognized in the early stages, diet correction and a few supplementary vitamins are all that is needed. If not, it is hypothesized that symptoms increase and reflect irreparable cellular damage. The constellation of symptoms is then referred to as disease A or B, e.g. Parkinson’s or Alzheimer’s.

It has now been shown that a common condition called “panic attacks” can be induced in a patient by the inhalation of air enriched with about 30% carbon dioxide, producing hypoxia. Therefore, this condition has nothing to do with Freudian psychology. It is a purely biochemical phenomenon, induced by hypoxia or pseudo-hypoxia. I recently met a friend with a story that I hear repeatedly. He was suddenly overcome by faintness while at work. It was associated with dizziness, lack of control and unconsciousness. He was conveyed by ambulance to the nearest emergency room where all the tests were negative and he was allowed to go home. Almost automatically this is referred to as psychosomatic disease as though the unfortunate patient is imagining or even inventing the obvious brain caused symptoms. There is little doubt that this represents a temporary period of hypoxia or pseudo-hypoxia that is extremely threatening to the individual for his or her future, since it indicates a state in the brain that can result in a recurrence, perhaps of greater severity.

I learned later that this friend had received heart surgery many years before this incident. Since the primary organs affected by the pseudo-hypoxia of beriberi are the brain, the nervous system and the heart, perhaps pseudo-hypoxia was the underlying cause of the heart problem that led to surgery. I doubt that it was ever considered. The trouble is that I cannot tell a friend that perhaps all he has to do is to take a few vitamin supplements. He simply would not believe me. My credibility would be lost, possibly with the loss of friendship and my proffered advice, like the proverbial seed falling on stony ground. The concept is “outside the box” and does not conform to the medical model that exists in the minds of all of us.

What is particularly important to understand is that mild to moderate hypoxia or pseudo-hypoxia is itself a form of stress and triggers the fight-or-flight reflex. This is quite logical since a decreased oxygen concentration is dangerous and even life-threatening. Under these conditions the lower brain is more easily activated and the resulting action fails to heed the advice and consent provided by the upper brain. Thus, a child or adolescent consuming empty calories, will be thiamine deficient and his brain susceptible to periods of pseudo-hypoxia, particularly when experiencing other energy demanding stressors. The hypoxia will affect autonomic regulation, which will manifest in a number of seemingly unrelated symptoms, that include digestive issues, attentional deficits, unexplained aches and pains and perhaps most notably in children, behavioral difficulties represented by extreme emotional lability.  The easiest way to produce pseudo-hypoxia is by the widespread consumption of carbohydrate and fatty foods (e.g. doughnuts) representing empty calories, so commonly associated with the consumption of high sugar content beverages. Sugary foods are not only devoid necessary nutrients, but the sugar itself forces what thiamine stores that exist out of the cells. Could high calorie malnutrition be responsible for some of the otherwise inexplicable violence reported almost daily in the news media? It is biochemically possible. Perhaps an easier question to answer, could thiamine deficiency and the resultant hypoxia be responsible for the myriad of autonomically controlled systems currently labeled dysautonomia? Possibly.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter.

Image creating using Canva AI.

This article was published originally on February 13, 2017. 

What Is Thiamine to Energy Metabolism?

16088 views

What Is Energy?

Energy is an invisible force. The aggregate of energy in any physical system is a constant quantity, transformable in countless ways but never increased or diminished. In the human body, chemical energy is produced by the combination of oxygen with glucose. This reaction is known as oxidation. The chemical energy is transduced to electrical energy in the process of energy conservation. This might be thought of as the “engine” of the brain/body cells. We have to start thinking that it is electrical energy that drives the human body.

The production of chemical energy is exactly the same in principle as the burning of any fuel but the details are quite different. The energy is captured and stored in an electronic form as a substance known as adenosine triphosphate (ATP) that acts as an energy currency. The chemical changes in food substances are induced by a series of enzymes, each of which combine together to form a chain of chemical reactions that might be thought of as preparing food for its ultimate breakdown and oxidation.

Each of these enzymes requires a chemical “friend”, known as a cofactor. One of the most important enzymes, the one that actually enables the oxidation of glucose, requires thiamine and magnesium as its cofactors. Chemical energy cannot be produced without thiamine and magnesium, although it also requires other “colleagues”, since all vitamins are essential. A whole series of essential minerals are also necessary, so it is not too difficult to understand that all these ingredients must be obtained by nutrition. The body cannot make vitamins or essential minerals. There is also some evidence that thiamine may have a part to play in converting chemical energy to electrical energy. Thus, it may be the ultimate defining factor in the energy that drives function. If that is true, its deficiency would play a vital role in every disease.

Energy Consumption

Few people are aware that our lives depend on energy production and its efficient consumption. A car has to have an engine that produces the energy. This is passed through a transmission that enables the car to function. In a similar manner, we have discussed how energy is produced. It is consumed in a series of energy requiring chemical reactions, each of which requires an enzyme with its appropriate cofactor[s]. This series of reactions can be likened to a transmission, consuming the energy provided from ATP and enabling the human body to function. If energy is consumed faster than it can be synthesized, or energy cannot be produced fast enough to meet demand, it is not too difficult to see that an insufficient supply of energy, a gap between supply and demand, would produce a fundamental change in function. This lack of function in the brain and body organs presents as a disease. The symptoms are merely warning the affected individual that something is wrong. The underlying cause of the energy deficiency has to be ascertained in order to interpret how the symptoms are generated.

Why Focus On Thiamine?

We have already pointed out that thiamine does not work on its own. It operates in what might be regarded as a “team relationship”. But it has also been determined as the defining cause of beriberi, a disease that has affected millions for thousands of years. Any team made up of humans requires a captain and although this is not a perfect analogy, we can regard thiamine as “captain” of an energy producing team. This is mainly due to its necessity for oxidation of glucose, by far and away the most important fuel for the brain, nervous system and heart. Thus, although beriberi is regarded as a disease of those organs, it can affect every cell in the body and the distribution of deficiency within that body can affect the presentation of the symptoms.

Thiamine exists only in naturally occurring foods and it is now easy to see that its deficiency, arising from an inadequate ingestion of those foods, results in slowing of energy production. Because the brain, nervous system and heart are the most energy requiring tissues in the body, beriberi produces a huge number of problems primarily affecting those organs. These changes in function generate what we call symptoms. Lack of energy affects the “transmission”, giving rise to symptoms arising from functional changes in the organs thus subserved. However, it must be pointed out that an enzyme/cofactor abnormality in the “transmission” can also interrupt normal function.

In fact, because of inefficient energy production, the symptoms caused by thiamine deficiency occur in so many human diseases that it can be regarded as the great imitator of all human disease. We now know that nutritional inadequacy is not the only way to develop beriberi. Genetic changes in the ability of thiamine to combine with its enzyme, or changes in the enzyme itself, produce the same symptoms as nutritional inadequacy. It has greatly enlarged our perspective towards the causes of human disease. Thiamine has a role in the processing of protein, fat and carbohydrate, the essential ingredients of food.

Generation Of Symptoms

Here is the diagnostic problem. The earliest effects of thiamine deficiency are felt in the hindbrain that controls the automatic brain/body signaling mechanism known as the autonomic nervous system (ANS). The ANS also signals the glands in the endocrine system, each of which is able to release a cellular messenger. A hormone may not be produced in the gland because of energy failure, thus breaking down the essential governance of the body by the brain. Hypoxia (lack of oxygen) or pseudo-hypoxia (thiamine deficiency produces cellular changes like those from hypoxia) is a potentially dangerous situation affecting the brain and a fight-or-flight reflex may be generated. This, as most people know, is a protective reflex that prepares us for either killing the enemy or fleeing and it can be initiated by any form of perceived danger. Thus, thiamine deficiency may initiate this reflex repeatedly in someone that seeks medical advice for it. Not recognizing its underlying cause, it is diagnosed as “panic attacks”. Panic attacks are usually treated by psychologists and psychiatrists with some form of tranquilizer because of the anxiety expressed by the patient.

It is easy to understand how it is seen as psychological, although the sensation of anxiety is initiated in the brain as part of the fight-or-flight reflex and will disappear with thiamine restoration. It may be worse than that: because the heart is affected by the autonomic nervous system, there may be a complaint of heart palpitations in association with the panic attacks and the heart might be considered the seat of the disease, to be treated by a cardiologist. The defining signal from the ANS is ignored or not recognized. Because it is purely a functional change, the routine laboratory tests are normal and the symptoms are therefore considered to be psychological, or psychosomatic. The irony is that when the physician tells the patient “it is all in your head”, he is completely correct but not recognizing that it is a biochemical functional change and that it has nothing to do with Freudian psychology.

A Sense Of Pleasure

We have known for many years that dietary sugar precipitates thiamine deficiency. A friend of mine had become well aware that alcohol, in any form, or sugar, will automatically give him a migraine headache. He still will take ice cream and suffer the consequences. I have had patients tell me that they have given up this and that “but I can’t give up sugar: it is the only pleasure that I ever get”. They still came back to me to treat the symptoms. We have come to understand that we have no self-responsibility for our own health. If we get sick, it is just bad luck and the wonders of modern medicine can achieve a cure. The trouble is that a mild degree of thiamine deficiency might produce symptoms that will make it more difficult to make the necessary decisions for our own well-being. Let me give some examples of symptoms that are typically related to this and are not being recognized:

  • Occasional headache, heartburn or abdominal pain
  • Occasional diarrhea or constipation
  • Allergies
  • Fatigue
  • Emotional lability
  • Insomnia
  • Nightmares
  • Pins and needles
  • Hair loss
  • Palpitations of the heart
  • Persistent cough for no apparent reason
  • Voracious, or loss of appetite

The point is that thiamine governs the energy synthesis that is essential to our total function and it can affect virtually any group of cells in the body. However, the brain, heart and nervous system, particularly the autonomic (automatic) nervous system (ANS) are the most energy requiring organs and are likely to be most affected.

Since the brain sends signals to every organ in the body via the ANS, a distortion of the signaling mechanism can make it appear that the organ receiving the signal is at fault. For example, the heart may accelerate because of a signal from the brain, not because the heart itself is at fault. Hence heart palpitations are often treated as heart disease when a mild degree of thiamine deficiency in the brain is responsible.

We have known for many years that sugar in all its different forms can and will precipitate mild thiamine deficiency. It is probably the reason why sugar is considered to be a frequent cause of trouble. If thiamine deficiency is mild, any form of minor stress may precipitate a much more serious form of the deficiency. An attack by an infecting organism is a source of stress imposed on the affected person and requires a boost of energy consumption. Therefore the illness that follows can be regarded as a “war” between the attacking disease producing organism and the brain/body that has to mobilize a defense. Either death, recovery, or a “stalemate” might be the expected outcome. If this is the truth, then any disease will respond to the ingestion of nutrients, particularly thiamine. It strongly suggests that Holistic or Alternative medicine could add a huge benefit to health preservation or the treatment of disease.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter.

Image by PDPics from Pixabay.

This article was published originally on August 25, 2020.

Thiamine Insufficiency Relative to Carbohydrate Consumption

20118 views

Thiamine (vitamin B1) is an essential micronutrient responsible for key reactions involved in the conversion of the foods we consume into the chemical energy substrate requisite for cellular function, adenosine triphosphate (ATP). Absent sufficient ATP, all sorts of metabolic functions become disordered leading to the disease processes that dominate western medicine. Chronic inflammation, altered immune function, hormone dysregulation, cognitive and mood disorders, and dysautonomias, all can be traced back to insufficient thiamine > inefficient mitochondrial function, reduced ATP, and the compensatory reactions that ensue.

Among the most common but least well-recognized contributors to thiamine deficiency is the regular consumption of a high carbohydrate/highly processed food diet. Although most of these foods are enriched or fortified with thiamine, perhaps staving off more severe deficiencies, the density of sugars overwhelms mitochondrial capacity to process these foods, both the thiamine and any other potential nutrients are excreted, while the carbohydrates themselves are stored as fat for future use. High-calorie malnutrition is a common contributor to thiamine deficiency in obesity but also may develop in presumed healthy athletes whose diets focus heavily on high carbohydrate intake.

Thiamine, along with other B vitamins is often deficient in vegetarian and vegan diets as well. Not only do fruits, vegetables, and carbohydrates contain minimal, if any, thiamine, but some have anti-thiamine factors and are high in what are called oxalates. Anti-thiamine factors found in some fruits and vegetables interfere with the absorption or digestion of thiamine. Oxalates are mineralized crystals of sorts that tend to build up and store in places like the kidneys (kidney stones), but also may store and cause problems anywhere in the body like bones, arteries, eyes, heart, and nerves. Effective oxalate metabolism and clearance requires thiamine. Since vegetarian and vegan diets are also carbohydrate intensive, thiamine deficiency and oxalate issues may be compounded. Thus, a number of common diets not only contain reduced thiamine content but cause an increased need for thiamine by at least three mechanisms; higher carbohydrate consumption overwhelming capacity, which is then magnified by poor carbohydrate and oxalate processing.

Add daily coffee, tea, and/or alcohol consumption to any diet, and whatever thiamine that is consumed is either inactivated by enzymes before being used or is unabsorbable. Add a medication or four and thiamine availability will tank simultaneously with an increased need. Medications both block nutrient uptake and/or increase the need for nutrients by inducing mitochondrial damage. Given that 70% percent of the US population takes at least one medication regularly, while 20% take four or more, it is safe to say, that a good percentage of the population is consuming insufficient thiamine to maintain mitochondrial function and health.

Are We Really Thiamine Deficient?

As an essential nutrient, thiamine must be consumed regularly to maintain sufficient concentrations. The question is how much thiamine is sufficient to maintain health? Current RDA values for daily thiamine intake suggest a little over a milligram per day is adequate for most adults. If this is true, then the minimum value can be attained through just about any diet including those dominant in highly processed, carbohydrate-dense foods, which are commonly either enriched or fortified with thiamine. Everything from bread to cereals and even junk food like Oreos have thiamine. Per the RDA values, none of us ought to be thiamine deficient and none of us ought to require thiamine supplementation, and yet, many of us are and do. Indeed, several studies, across disparate populations show that even by this minimum standard, deficiency is a serious health problem. From our book:

  • 76% of diabetics (type 1 and type 2)
  • 29% of obese patients, 49% of post-bariatric surgery
  • 40% of community-dwelling elderly, 48% of elderly patients in acute care
  • 55% of cancer patients
  • 20% ER patients (random sample, UK)
  • 33% of congestive heart failure patients
  • 38% of pregnant women, more with hyperemesis
  • 30% of psychiatric patients

It takes approximately 18 days to completely abolish endogenous thiamine stores in a diet that is completely devoid of thiamine. Except under total starvation, medical or industrial food production mishaps, and experimentally contrived situations, thiamine consumption is never completely abolished. It waxes and wanes by dietary choices and life stressors. According to rodent studies, it takes a reduction of greater than 80% of thiamine stores before the more severe neurological symptoms are recognizable. In humans, these symptoms include those associated with Wernicke’s encephalopathy, the various forms of beriberi, and dysautonomic function. These include but are not limited to: ataxia, changes in mental status, optic neuritis, ocular nerve abnormalities, diminished visual acuity, high-output cardiac failure with or without edema, high pulse pressure, polyneuropathy (sensorimotor), enteritis, esophagitis, gastroparesis, nausea and vomiting, constipation, hyper- or hypo-stomach acidity, sympathetic/parasympathetic imbalance, postural orthostatic tachycardia syndrome (POTS), cerebral salt wasting syndrome, vasomotor dysfunction, respiratory distress, reduced vital capacity, and/or low arterial O2, high venous O2.

With a less severe thiamine deficiency, symptoms are rarely recognized as such and often attributed to psychological manifestations. A not entirely ethical study done in 1942 involving 11 women on a low thiamine diet over a period of ~3-6.5 months found striking symptoms.

  • During this time all subjects showed definite changes in personality.
  • They became irritable, depressed, quarrelsome, and uncooperative.
  • Two threatened suicide. All became inefficient in their work, forgetful, and lost manual dexterity.
  • Their hands and feet frequently felt numb.
  • Headaches, backaches, sleeplessness, and sensitivity to noises were noted.
  • The subjects fatigued easily and were not able to vigorous exertion.
  • Constipation was the rule, but no impairment, of gastrointestinal motility, could be demonstrated fluoroscopically.
  • Anorexia, nausea, vomiting, and epigastric distress were frequently observed.
  • Low blood pressure and vasomotor instability were present in all patients.
  • At rest, pulse rates were low (55 to 60 per minute) but tachycardia followed moderate exertion. Sinus arrhythmia was marked.
  • Macrocytic, hypochromic anemia of moderate severity (3.0 to 3.5 million red cells) developed in 5 cases.
  • A decrease in serum protein concentration occurred in 8 subjects.
  • Basal metabolic rates were lowered by 10 to 33 points.
  • Fasting blood sugar was often abnormally high.

The study above demonstrated a rapid and dramatic onset of symptoms relative to a diet with limited thiamine. Depending upon caloric intake, the amount of thiamine allowed was approximately 1/3 to 1/5 of the amount recommended by the RDA. Admittedly, the RDA for thiamine is low, to begin with, but even so, this was not a complete absence of thiamine. Since the study took place in the early 1940s, it is difficult to ascertain the specifics of the diet. Nevertheless, it demonstrates a clear association between general health and one’s ability to function, and thiamine insufficiency.

High Carbohydrate Diets Equal Lower Thiamine

More recently, a short and very small study (12 days and 12 participants) of active young men and women (ages 25-30) investigated the relationship between carbohydrate intake and thiamine status. Thiamine was measured in blood, plasma, urine (creatinine), and feces at four time points: at baseline, before the study began, during an adaptation phase where carbohydrate intake represented 55% of the total caloric intake, and during the two subsequent intervention phases, where carbohydrate intake was increased to 65% and 75% of the total caloric intake, respectively. Both caloric and thiamine intake was held constant throughout the study despite the increased intake of carbohydrates. Activity levels were also held constant. Across this short-term study, as carbohydrate intake increased, plasma, and urinary thiamine decreased. Excretion through feces remained unchanged. Transketolase enzyme activity was also measured but remained unchanged. Given the short-term nature of this study, the fact that transketolase remained unchanged is unexpected. In addition to the decreasing thiamine values, there were several changes in lipid profile as well. Despite the short duration of this study, however, the results show a clear relationship between carbohydrate intake and thiamine status; one that would likely be magnified over time and certainly if other life stressors and medical and environmental toxicants were added to the mix.

It is important to note current dietary guidelines suggest carbohydrate consumption should fall between 45-65% of total calories, percentages which, per this study would decrease thiamine availability significantly. From the baseline diet to the 55% adaptation phase, thiamine dropped precipitously, only to drop even further at the 65% phase. A recent study surveying macronutrient consumption showed that average carbohydrate consumption across the US population represented approximately 50% of total caloric intake. Importantly though, the study found that 42% of the carbohydrate consumption came in the form of what researchers termed ‘low-quality carbs’ e.g. sugary processed foods with no nutritional value. Thiamine is only found in pork, beef, wheat germ and whole grains, organ meats, eggs, fish, legumes, and nuts. It is not present in fats/oils, polished rice, or simple sugars, nor are dairy products or many fruits and vegetables a good source. Indeed as mentioned previously, some fruits and vegetables may contain anti-thiamine factors. A diet that is 42% empty calories, that contains limited to no nutritive value, save except what has been added post hoc via enrichment, begs for mitochondrial damage and the illnesses that ensue. And yet, that is precisely the nutritional landscape in which most of us exist.

Admittedly, both studies were very small, but the research connecting thiamine deficiency to ill-health and carbohydrate consumption to thiamine loss is clear. Given the dominance of ultra-processed carbohydrate-dense foods in the modern diet, is likely that high-calorie malnutrition underlies much of the chronic illness that plagues western medicine. To learn more about thiamine deficiency and the havoc it wreaks on health: Thiamine Deficiency Disease, Dysautonomia, and High Calorie Malnutrition.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, and like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter.

Thiamine Deficiency and Sugar in Diabetes

6831 views

Thiamine is one of the B vitamins and I need to explain its action. To put it as simply as possible, it regulates sugar metabolism in every cell within the body and has a special importance in the brain. About four years ago a researcher in England reported that there was a mild deficiency of thiamine (vitamin B1) in diabetic patients, a disease that affects sugar metabolism. He said that all diabetics should have a supplement of thiamine because he had anticipated that it will prevent complications in this devastating disease. If that is not enough to make a diabetic sit up and take notice I would be very surprised.  I will try to explain this a little further.

A program on PBS television called “The Quiet Revolution” reported that there were 29 million patients in the United States with type two diabetes and as many as 70 million with pre-diabetes, meaning that they were on their way  to contract the disease. If we had 29 million cases of “flu” it would be called a pandemic. Most people with type 2 diabetes have no idea that their health before the onset of the disease is within their own responsibility. Our culture says “go ahead, do what you like, eat what you like, drink what you like; if you get sick, it is just bad luck and you go to one of those clever characters called Dr. who will produce the magic bullet that “cures” you because of the wonders of modern scientific medicine.

Although both types one and two have different causative factors, I want to emphasize very strongly that both types are not purely genetically determined. The genetic risk in type 1 is much greater than in type 2 and is certainly the major component as the underlying cause. Type 2 is much more clearly initiated by dietary indiscretion in a person who might be, shall we say, at genetic risk. Much of our diet today involves the consumption of man-made foods developed by the food industry. Of course, the main drive of this industry is to sell their products and so it appeals to our palatability, a sensory phenomenon that has nothing to do with good nutrition. We all know what pleasure we get from tasting anything that is sweet. Since sweetness sells, it explains why so many man-made foods are laced with sugar, so long thought to be harmless and even good for you by supplying quick energy.

Sweet and Dangerous: Sugar and Thiamine Deficiency

In 1973, John Yudkin, a professor of nutrition in a large London Hospital wrote a book with the title “Sweet and Dangerous”, the result of his many years of research into the dangers of sugar.  He reported that many diseases, including heart disease, were related to its ingestion. As so often happens, this terribly important book was ignored and cholesterol became the demon for the cause of heart disease. Now, 40 years later, many people know that the cholesterol story has been debunked. Because sugar requires vitamin B 1 to metabolize it, in much the same way as gasoline requires a spark plug to burn it, taking sugar on its own in the form of empty calories easily overwhelms the power of thiamine to carry out its function.

That means that you have an imbalance between the calories and the vitamin or a relative deficiency of thiamine. Your daily intake of thiamine may be sufficient for a good diet but not enough to take care of the overload of sugar represented as the bad diet which is so common.  It may easily be accomplished by the consumption of the stuff that we consume in our social activities.  Yes, there is no doubt that it makes the mouth water and the sweetness underlies the joy of the social event but if it is causing widespread disease, I ask you, is it worth it?

The lower part of the human brain is particularly sensitive to thiamine deficiency and because this part of the brain organizes the entire body in its performance of adapting to the environment in which we find ourselves, we easily become maladapted. For example, we may feel cold when it is hot or hot when it is cold, a mistake in sensory input and brain interpretation. The nervous system involved in this reaction is known as the autonomic nervous system and is entirely automatic.  The message from the brain to the heart causes it to accelerate when it is a necessary adaptive need as, for example, running for a bus.  But when this happens spontaneously for no apparent reason at all, we might take this to a physician and tell him that “I have palpitations of my heart”.  Unfortunately the medical focus would be on the heart not on the nervous system that caused the acceleration. For this reason one of the complications in diabetes is called “autonomic neuropathy”, meaning that the autonomic nervous system is disorganized. Thiamine protects diabetics from complications because it improves the ability of our cells to produce adequate energy for function by “burning sugar as brain fuel”.  Think of it as a change of inefficient spark plugs in a car engine.

Thiamine deficiency is sometimes referred to as pseudo (or false) hypoxia because it results in exactly the same symptoms as those from a mild to moderate deprivation of oxygen. Its effect on the lower part of the brain is to make it more reactive to all input signals. When you read a telegram giving you bad news, your eyes send a signal to the brain that has to interpret the meaning of the signal. I refer to the input signals, whether they are physical or mental, as “stress”. Your response to the stress is organized by the lower brain with “advice and consent” from the higher brain. Freud referred to the lower brain as the “id”. It reacts automatically to anything perceived as danger or self indulgence and the upper brain as the “ego” because it either permits or prevents the ensuing action. It is our moral censor.

I have studied the effects of this kind of “high calorie malnutrition” and it is responsible for a huge amount of mental illness and unpredictable bad behavior. It makes the “id” irritable and weakens the “ego” making a person much more likely to act in response to a whim or a nursed grievance.  There is much evidence that it can even affect criminal behavior.  This kind of malnutrition is widespread in America, but I have never seen it discussed in relation to whether the behavior exhibited at inexplicable school shootings is a potential factor. A recent exhibition of “road rage” projected on TV news might just be comprehensible because it was otherwise well beyond civilized behavior. Although this may sound too far-fetched, we have an epidemic of Attention Deficit Disorder, with or without hyperactivity, learning disability and obesity in our children that defies a genetically determined cause. Nature does not make that kind of mistake in so many individuals. Their young brains are irritable and disorganized because of dietary indulgence.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Image by Bruno from Pixabay.

ADD, ADHD and Other Problems of Modern Childhood

5623 views

Is Hyperactivity Normal?

Have you ever wondered whether the constant fidgeting of modern children is normal? I have talked to teachers who started their careers many years ago. They have told me that it was unusual, if not rare, to have a hyperactive, non-compliant child in their class. Today, these teachers have many in their class that are troublesome in this way. This has become so widespread that it has come to be regarded as a normal phenomenon in these children. If you go into their private lives, as I did as a pediatrician, you will find that they have diverse sleep problems, temper tantrums and constant fiddling with things that adorn the house. They make the lives of their parents very stressful who often accept that this is normal parenthood to be born philosophically.

Sometimes, parents do not accept this as normal activity and take their child to a pediatrician. Unfortunately, if attention in school is the major phenomenon, it is classified as Attention Deficit Disorder (ADD). If it is associated with hyperactivity, it is classified as Attention Deficit Hyperactivity Disorder (ADHD). I use the word “unfortunately” because they seem to be regarded as separate disease entities rather than “variations on a symphonic theme”. If the pediatrician considers it to be relatively mild, and particularly if laboratory tests are normal, the parents may be accused of lax discipline. On the other hand, if the parents are obviously deeply disturbed by the severity of the child’s behavior, medication is prescribed. This often makes the situation even worse.

From the Difficult Pregnancy, Childhood Infections to ADHD

A typical history for one of the children recognized as having ADHD is as follows. Hyperemesis (excessive vomiting) or toxemia in the mother during pregnancy and other pregnancy complications are often recorded. At birth, the Apgar score may be abnormal and there may be a history of jaundice, (now known to be due to inefficient oxidation) leading to treatment by exposure to ultra violet light. During the next few months, the infant seems to be unusually irritable, suffering from behavior referred to as “colic”, sudden awaking out of sleep and repeated episodes of crying. Later on, repeated ear infections become almost a way of life. Each is treated with antibiotics and the parents often become quite desperate in looking for some kind of treatment that will prevent them. During the preschool years, the fidgeting and constant movement is merely accepted as normal. They only become troublesome as the child starts to go to school.

As a pediatrician in a multi-specialty clinic, I saw a great many of these children. They were often referred by other pediatricians as “emotional” problems. Such problems are still considered by many physicians as psychological due to poor parenting. It was expected that they would be dealt with by cooperation with a psychologist and/or the prescription of an appropriate medication. Often, if the birth had been difficult, the obstetrician might be blamed and the behavior considered due to brain damage. It was the incidence of problems of this nature that arrested my attention and I found little or no evidence of poor parenting. Quite naturally the parents were often distraught due to the recurrence of infections and their multiple visits to the pediatrician.

Unusual Clinical Characteristics of the ADHD Child

My physical examination revealed many unusual observations and I will give a typical description. The child would have bright red cheeks and a zone of pallor around the mouth. The tongue would be covered with red spots which I later learned to be due to inflammation of small projections on the tongue known as filiform papillae. It was often difficult to look at the child’s throat because the gag reflex could be induced by a tongue depressor without even touching the tongue. The knee reflexes would be either highly excitable or nonreactive. It was almost always possible to produce a line of blanching on the legs by stroking the skin with the tip of a finger. Finally, the blood pressure, not usually measured in small children, was abnormal. The upper (systolic) pressure could be as high as 120 or 130 and the lower one (diastolic) would be as low as zero. A normal blood pressure of a child in this age bracket would be 90/60. The heart would be much faster than usual. By placing my stethoscope over the groin I would be able to hear the blood coursing through the femoral artery, the major artery to the leg.

Connecting the Dots: Diet, Thiamine and ADHD

You might be surprised to hear that these physical findings are those that would be found in a child with the vitamin B1 (thiamine) deficiency disease beriberi, naturally turning my attention to the question of diet. Could both the physical and mental defects in these children be explained on the basis of deficiency of a vitamin?

I came across a book with the title “Thiamine and Beriberi” it was written by a group of university-based Japanese scientists. Beriberi had existed in Eastern countries for thousands of years and the discovery that thiamine deficiency was its cause was extremely dramatic and affected the lives of millions. I read it and reread it and became acquainted with the characteristics of the disease. The clinical effects are different in infants, children and adults and it was clear to me that what I had observed in these “emotionally disturbed” children could be explained on this basis. How could such a devastating disease associated with malnutrition affect children in America? Wasn’t this a disease that occurred in poor countries? Wasn’t this associated with poverty?

The answer had come from research done in Cambridge, England and reported in 1936. Sir Rudolph Peters had found that there was no difference in the behavior of brain cells from thiamine deficient pigeons compared with those that were thiamine sufficient until glucose was added to the preparation. There was no activity at all from the thiamine deficient cells, whereas the thiamine sufficient cells immediately began to produce carbon dioxide, showing that they were active. Peters called this effect by a scientific nomenclature (catatorulin). This important observation was the beginning of the research that led to our modern knowledge of how cells produce the energy that enable them to function.

What this means is that if you take sugar in a state of marginal thiamine deficiency, you precipitate the symptoms of beriberi. It is very likely that the mother demonstrated her thiamine deficiency during pregnancy by suffering from hyperemesis and toxemia, thereby passing on a deficiency to her infant long before birth. The ad lib. ingestion of sugar in its many different forms is virtually a way of life in America. By our desire to please the children we love, are we in fact creating the common disasters of childhood by our permissive attitude towards their consumption of sweets? Are we inducing the seeds of addiction in the first years of life? Are we inducing ADHD?

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Image by ambermb from Pixabay.

A Question of Responsibility in Health and Disease

2885 views

Self-responsibility is much needed in the quixotic culture that surrounds us today. It should begin to be acquired even in infancy as we learn to navigate life. The difficult job of parenthood, perhaps the most important one of all, has to be undertaken without previous experience or training. In former years the wisdom of grandparents was sought avidly when families tended to remain in the same locality. Geographic separation has caused them to be largely discarded.

This post states that there is no more important example of self-responsibility than in maintenance of health. When we are struck down by disease, we have been taught that it is purely an act of nature: that it has nothing to do with our own actions. It is regarded as bad luck or an inevitable effect of genetic predisposition. We have also been taught that when we get sick, whatever the cause may be, that the wonders of modern medicine will take care of it. We accept a prescription as a birthright, often without seeking why it is being prescribed or how it is expected to cure us. Is that really how we want to live?

Self-Responsibility is Critical to Health

When I emphasize dietary indiscretion as the harbinger of ill health, some readers will say, “oh yes, we’ve heard all that stuff before. It is so boring”, not even bothering to read further. So let us use an analogy that I have used before in posts on this website. You have bought a car and the owner’s manual tells you that the engine uses regular gas. However, a friend has told you that high octane gas increases acceleration and makes the car livelier. You have decided that the feel of the car with high octane gas appeals to you, even though you have also been told that it increases the wear-and-tear on the engine, possibly leading to an eventual breakdown. With that knowledge, you are faced with a choice. If your decision is to continue using a fuel for which the engine has not been designed, it might be referred to as indiscretion, or even lack of self-responsibility. When the forecast of breakdown becomes a reality you might even blame the car maker. Cursing the necessary expenditure, you might expect a skilled mechanic to repair the damage, even forgetting that it may have been your own fault. Could this be compared with dietary indiscretion? Of course, you need to have the knowledge of how and why the “wrong choices” do, in fact, result in health breakdown. If you persist in making those “wrong choices”, are you in fact exercising self-responsibility towards your own health?

Natural Sugars versus Sugary Sweets

However we arrived on the face of the earth, we could not have survived if the fuel had not been available to us. Anthropologists tell us that our ancestors were “hunter gatherers”. The food (fuel) was provided by Mother Nature in the form of nuts, seeds, roots, leaves and fruits. In particular, there was no such thing as sugar in a free state. It was locked up in the fruit and leaves. There are at least 40 or more nutrients in natural food that are mandatory to the maintenance of health and many may not even have been discovered yet. None of them are contained in the highly processed, heavily sweetened substances we call food.

Where did we go wrong? Believe it or not, sugar is the villain. We can now go on the Internet and are told repeatedly that it is more addictive than cocaine and yet 80% of the artificial foods on the shelves of a groceries store contain sugar. In fact, these “foods” would not sell unless they were sweet to the taste. People are so bored with hearing this that it is virtually ignored. Because the characteristic symptoms develop slowly and do not produce abnormal conventional laboratory studies, the connection is almost invariably lost. When symptoms do emerge, they are often mistakenly diagnosed as psychosomatic, for which the standard treatment is a prescription for one of the many tranquilizer pills. Self-indulgence as the cause is never considered by patient or physician.

Of Different Fuels

Let’s try to keep it simple by turning once again to analogy. Gasoline in a car engine has to be ignited. The explosion that occurs represents a union of gasoline with oxygen. The resultant energy has to be captured in a cylinder in order to drive a piston. This connects with a flywheel that transmits the energy to the wheels through a transmission. Our bodies have exactly the same problems but the mechanisms are widely different. Glucose, derived from simple sugars, is the primary fuel of our cells, particularly in the brain. It is “ignited” by uniting it with oxygen and this is done by means of an enzyme. In order to function properly, this enzyme requires the presence of vitamin B1 (thiamine) and magnesium. You could say that thiamine and magnesium “ignite the glucose”, releasing energy in the form of electrons. The energy from electrons synthesizes a kind of energy currency known as ATP. This works a little like a battery. Chemical energy derived from “burning” (oxidizing) glucose must be transduced to electric energy for physical or mental function. If those nutrients are not present, the sugars remain unprocessed, free to evoke the host of modern disease processes that fall under the rubric of Type 2 diabetes.

Returning to our engine analogy, many car owners will remember that they had to use a mechanism called a choke when starting the cold engine. This resulted in a temporary high concentration of gas. Perhaps it will be remembered that if and when the choke was not released or discontinued when the engine had warmed up, the engine would run distinctly badly and black smoke would emerge from the exhaust pipe. The black smoke represents inefficient combustion of the gasoline. Therefore, there should be a much lower ratio of gasoline to oxygen when the engine has warmed.

Cellular Engines Need Fuel

Each of all our cells have “engines” called mitochondria that generate energy. They work constantly, do not have to be started like a car engine and are always warm. They do not need a choke. When we take an excess of calories that do not contain the necessary vitamins and minerals, it is exactly like choking our mitochondria, creating inefficiency of energy production. This is particularly true of sugar that overwhelms the ability of vitamin B1 to “ignite” it. Inefficient combustion (oxidation) gives rise to organic acids that are the equivalent of black smoke in the car exhaust and they can be found in the urine. This inefficiency of energy production affects the part of the brain that is responsible for our ability to adjust ourselves (adapt) to the changes that occur in our environment. We develop functional changes such as “brain fog”, palpitations of the heart, unusual or excessive sweating and “goosebumps” may appear on the skin. We may have a drop in blood pressure, associated with a fainting attack. Because the standard laboratory tests are normal, it is concluded that the symptoms are psychosomatic.

I remember the case of an adolescent whose diet contained a lot of “junk foods”. He climbed a rope in the gymnasium, entailing the consumption of energy. When he came down he passed out and was removed to the nearest hospital. Without knowing that he had vitamin B1 deficiency, they gave him intravenous fluids containing glucose. He had eleven bloodstained bowel movements and died. Giving sugar to somebody who is deficient in vitamin B1 is extremely dangerous and the trouble is that ingestion of sugar leads to vitamin B1 deficiency. There is considerable evidence that dietary indiscretion of this nature, continued over years, may eventually give rise to a brain disease that is given a name. Alzheimer’s, senile dementia, Parkinson’s disease and other well-known scourges may well be the legacy in your later years.

What We Eat and Drink Matters

In light of this discussion, who is responsible for the current health crisis? While it is tempting to blame others, and certainly the food and pharmaceutical industries benefit greatly from our incessant need to indulge, the blame ultimately must reside with each of us. We have abdicated our responsibility to manage our own health. Like the car owner who ‘likes the feel’ he gets from his car with high octane gas, we like the feel we get from when we eat sweets and other junk foods. Ultimately though, without the correct fuel, engines clog and sputter. Whether those engines reside in our vehicles or in our bodies, absent the correct fuel, damage accrues. It is a relatively simple equation, but one that requires a modicum of self-awareness and responsibility. Unfortunately, I am afraid self-responsibility seems to have disappeared from modern concepts of health and disease. I suspect that until it is found and embraced again as core human value, diseases of consumption and indulgence will continue to flourish.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Image by Tumisu from Pixabay.