thiamine IBS

It All Comes Down to Energy

14704 views

The Threat Around Us

Animals, including Homo Sapiens, survive in an essentially toxic environment, surrounded by microorganisms, potential poisons, the risk of trauma, and adverse weather conditions. Evolutionary development has equipped us with complex machinery that provides defensive mechanisms when any one of these factors has to be faced. Before the discovery of microorganisms, medical treatment had no rhyme or reason, but killing the microorganisms became the methodology. The research concentrated on ways and means of “killing the enemy”, the bacteria, the virus, the cancer cell. The discovery of penicillin reinforced this approach. We are now facing a period of potential impotence because of bacterial resistance, failure of attempts to kill viruses, and the resistance to chemotherapeutic agents in cancer. Louis Pasteur is purported to have said on his deathbed, “I was wrong, it is the terrain that matters”, meaning body defenses.

Hans Selye, whose research into how animals defend themselves when attacked by any form of stress, led to his description of the General Adaptation Syndrome (GAS). He recognized the necessity of energy in initiating the GAS and its failure in an animal that succumbed to stress. He labeled human disease as “the diseases of adaptation”. In Selye’s time, there was little information about energy metabolism but today, its details are fairly well-known. The suggestion of a new approach depends on the fact that our defenses are metabolic in character and require an increase in energy production over and above that required for homeostasis. If the GAS applies to human physiology and that we are facing the “diseases of adaptation”, it is hypothesized that research should be applied to methods by which energy metabolism can be stimulated and mobilized to meet the stress.

Energy Deficiency, Defective Immunity, and COVID-19

There is evidence that energy deficiency applies to each of the diseases described here. It may be the unrecognized cause of defective immunity in Covid-19 disease. Although in coronavirus disease the clinical manifestations are mainly respiratory, major cardiac complications are being reported involving hypoxia, hypotension, enhanced inflammatory status, and arrhythmic events that are not uncommon. Past pandemics have demonstrated that diverse types of neuropsychiatric symptoms, such as encephalopathy, mood changes, psychosis, neuromuscular dysfunction, or demyelinating processes may accompany acute viral infections or may follow infection by weeks, months, or longer in viral recovered patients. Electrocardiographic changes have been reported in Covid-19 patients. The authors suggest that it may be attributed to hypoxia as one possibility. Because the total body stores of thiamine are low, acute metabolic stress can initiate deficiency. Thiamine deficiency has a clinical expression similar to that observed in hypoxic stress and the authors referred to it as pseudo-hypoxia. It is therefore not surprising that defective energy metabolism can express itself clinically in many different ways.

The present medical model regards each disease as having a separate cause, but the large variety of symptoms induced by thiamine deficiency suggest the ubiquitous nature of energy deficiency as a cause in common. Obesity, a reflection of high calorie malnutrition, has been published as a risk factor for patients admitted to intensive care with Covid-19. Thiamine deficiency was reported in 15.5-29% of obese patients seeking bariatric surgery. Hannah Ferenchick M.D. an emergency room physician commented online that many of her patients with Covid-19 had what she called “silent hypoxemia”. These patients had an arterial oxygen saturation of only 85% but “looked comfortable” and their chest x-rays “looked more like edema”  It has long been known that patients with beriberi had low arterial oxygen and a high venous oxygen saturation. All that would be needed to support the hypothesis of thiamine deficiency in some Covid victims would be finding a high venous oxygen saturation at the same time as a low arterial saturation. Also, edema is a very important sign of beriberi, and thiamine deficiency has been noted in critical illness.

Disrupted Autonomic Function

There have been many articles in medical journals describing dysautonomia, mysteriously in association with a named disease, but with no suggestion that the dysautonomia is part of that disease. More recently, there is increasing evidence that dysautonomia is a feature of chronic fatigue syndrome (CFS), manifested primarily as disordered regulation of cardiovascular responses to stress. Manipulating the autonomic nervous system (ANS) may be effective in the treatment of CFS. Dysautonomia is also a characteristic of thiamine deficiency. Patients with Parkinson’s disease begin to lose weight several years before diagnosis and a study was undertaken to investigate this association with the ANS. Costantini and associates have shown that high dose thiamine treatment improves the symptoms of Parkinson’s disease, although the plasma thiamine concentration was normal. They have also shown that high dose thiamine treatment decreases fatigue in inflammatory bowel disease, Hashimoto’s disease, after stroke, and multiple sclerosis. As already noted, it is also an important consideration in critically ill patients.

Multiple System Atrophy is a devastating and fatal neurodegenerative disorder. The clinical presentation is highly variable and autonomic failure is one of its most common problems. Dysautonomia was found to be a clinical entity in Ehlers-Danlos syndrome, a musculoskeletal disease, and this syndrome frequently coexists with Postural Orthostatic Tachycardia Syndrome (POTS), a disease that is included in the group of diseases under the heading of dysautonomia. Some cases of POTS have been reported to be thiamine deficient. This common condition often involves chronic unexplained symptoms such as inappropriate fast heart rate, chronic fatigue, dizziness, or unexplained “spells” in otherwise healthy young individuals. Many of these patients have gastrointestinal or bladder disorders, chronic headaches, fibromyalgia, and sleep disturbances. Anxiety and depression are relatively common. Not surprisingly the many symptoms are often unrecognized for what they represent and the patient may have a diagnosis of psychosomatic disease.

Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for a group of conditions that share common inflammatory pathways and for which there is no definite etiology. These diseases affect the elderly most severely with many of the patients having two or more IMIDs. They include type I diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, rheumatoid arthritis, Sjogren’s syndrome, systemic lupus, psoriasis, psoriatic arthritis, and multiple sclerosis. The recent recognition of small fiber neuropathy in a large subgroup of fibromyalgia patients reinforces the dysautonomia-neuropathic hypothesis and validates fibromyalgia pain. These new findings support the disease as a primary neurological entity.

Energy Deficiency During Pregnancy: The Cause of Many Complications

Irwin emphasized the energy requirements of pregnancy in which the maternal diet and genetics have to be capable of producing energy for both mother and fetus. He found that preventive megadose thiamine, started in the third trimester, completely prevented all the common complications of pregnancy. Hyperemesis gravidarum is the most common cause of hospitalization during the first half of pregnancy and is second only to preterm labor for hospitalization in pregnancy overall. This disease has been associated with Wernicke’s encephalopathy, well known to be due to brain thiamine deficiency. The traditional explanation is that vomiting is the cause, but since vomiting is a symptom of thiamine deficiency, it could just as easily be the cause rather than the effect. In spite of the fact that migraines are one of the major problems seen by primary care physicians, many patients do not obtain appropriate diagnoses or treatment. Migraine occurs in about 18% of women and is often aggravated by hormonal shifts. A complex neurological disorder involving multiple brain areas that regulate autonomic, affective, cognitive, and sensory functions, it occurs also in pregnancy. Features of the migraine attack that are indicative of altered autonomic function include nausea, vomiting, diarrhea, polyuria, eyelid edema, conjunctival injection, lacrimation, nasal congestion, and ptosis.

The Proteopathies: Disorders Involving Critical Enzymes

The earliest and perhaps best example of an interaction between nutrition and dementia is related to thiamine. Multiple similarities exist between classical thiamine deficiency and Alzheimer’s disease (AD), in that both are associated with cognitive deficits and reductions in brain glucose metabolism. Thiamine-dependent enzymes are critical components of glucose metabolism that are reduced in the brains of AD patients. Senile plaques and neurofibrillary tangles are the principal histopathological marks of AD and other proteopathies. The essential constituents of these lesions are structurally abnormal variants of normally generated proteins (enzymes). The crucial event in the development of transmissible spongiform encephalopathies is the conformational change of a host-encoded membrane protein into a disease associated, fibril forming isoform. A huge number of proteins that occur in the body have to be folded into a specific shape in order to become functional. When this folding process is inhibited, the respective protein is referred to as being mis-folded, nonfunctional, and causatively related to a disease process. These diseases are termed proteopathies and there are at least 50 different conditions in which the mechanism is importantly related to a mis-folded protein. Energy is required for this folding process. Because of their reported relationship with thiamine, it has been hypothesized that mis-folding might be related to its deficiency on an energy deficiency basis.

It All Comes Down to Energy

A hypothesis has been presented that the overlap of symptoms in different disease conditions represents cellular energy failure, particularly in the brain. If this should prove to be true, the present medical model would become outdated. An attack by bacteria, viruses or an oncogene might be referred to as “the enemy”. The defensive action, organized and controlled by the brain, may be thought of as “a declaration of war” and the illness that follows the evidence that “a war is being fought”. This concept is completely compatible with the research reported by Selye. It underlines his concept that human diseases are “the diseases of adaptation”, dependent on energy for a successful outcome in a “war” between an attacking agent and the complex defensive actions of the body. Killing the enemy is a valid approach to treatment if it can be done safely. Unfortunately, the side effects of most medications sometimes makes things worse and that is offensive to the Hippocratic Oath. We badly need to create an approach to research that explores ways and means of supporting and stimulating the normal mechanisms of defense.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

This article was published originally on May 11, 2020.

SIBO, IBS, and Constipation: Unrecognized Thiamine Deficiency?

113282 views

In many of my clients, chronic upper constipation and gastroesophageal reflux disease (GERD) are misdiagnosed as bacterial overgrowth. Unfortunately, they are often non-responsive to antimicrobial treatments. Yet, sometimes the issues are fixed within a few days of vitamin B1 repletion. This has shown me that often times, the small intestinal bacterial overgrowth (SIBO) is simply a symptom of an underlying vitamin B1 or thiamine deficiency.

GI Motility and Thiamine

The gastrointestinal (GI) tract is one of the main systems affected by a deficiency of thiamine. Clinically, a severe deficiency in this nutrient can produce a condition called “Gastrointestinal Beriberi”, which in my experience is massively underdiagnosed and often mistaken for SIBO or irritable bowel syndrome with constipation (IBS-C). The symptoms may include GERD, gastroparesis, slow or paralysed GI motility, inability to digest foods, extreme abdominal pain, bloating and gas. People with this condition often experience negligible benefits from gut-focused protocols, probiotics or antimicrobial treatments. They also have a reliance on betaine HCL, digestive enzymes, and prokinetics or laxatives.

To understand how thiamine impacts gut function we have to understand the GI tract. The GI tract possesses its own individual enteric nervous system (ENS), often referred to as the second brain. Although the ENS can perform its job somewhat autonomously, inputs from both the sympathetic and parasympathetic branches of the autonomic nervous system serve to modulate gastrointestinal functions. The upper digestive organs are mainly innervated by the vagus nerve, which exerts a stimulatory effect on digestive secretions, motility, and other functions. Vagal innervation is necessary for dampening inflammatory responses in the gut and maintaining gut barrier integrity.

The lower regions of the brain responsible for coordinating the autonomic nervous system are particularly vulnerable to a deficiency of thiamine. Consequently, the metabolic derangement in these brain regions caused by deficiency produces dysfunctional autonomic outputs and misfiring, which goes on to exert detrimental effects on every bodily system – including the gastrointestinal organs.

However, the severe gut dysfunction in this context is not only caused by faulty central mechanisms in the brain, but also by tissue specific changes which occur when cells lack thiamine. The primary neurotransmitter utilized by the vagus nerve is acetylcholine. Enteric neurons also use acetylcholine to initiate peristaltic contractions necessary for proper gut motility. Thiamine is necessary for the synthesis of acetylcholine and low levels produce an acetylcholine deficit, which leads to reduced vagal tone and impaired motility in the stomach and small intestine.

In the stomach, thiamine deficiency inhibits the release of hydrochloric acid from gastric cells and leads to hypochlorydria (low stomach acid). The rate of gastric motility and emptying also grinds down to a halt, producing delayed emptying, upper GI bloating, GERD/reflux and nausea. This also reduces one’s ability to digest proteins. Due to its low pH, gastric acid is also a potent antimicrobial agent against acid-sensitive microorganisms. Hypochlorydria is considered a key risk factor for the development of bacterial overgrowth.

The pancreas is one of the richest stores of thiamine in the human body, and the metabolic derangement induced by thiamine deficiency causes a major decrease in digestive enzyme secretion. This is one of the reasons why those affected often see undigested food in stools. Another reason likely due to a lack of brush border enzymes located on the intestinal wall, which are responsible for further breaking down food pre-absorption. These enzymes include sucrase, lactase, maltase, leucine aminopeptidase and alkaline phosphatase. Thiamine deficiency was shown to reduce the activity of each of these enzymes by 42-66%.

Understand that intestinal alkaline phosphatase enzymes are responsible for cleaving phosphate from the active forms of vitamins found in foods, which is a necessary step in absorption. Without these enzymes, certain forms of vitamins including B6 (PLP), B2 (R5P), and B1 (TPP) CANNOT be absorbed and will remain in the gut. Another component of the intestinal brush border are microvilli proteins, also necessary for nutrient absorption, were reduced by 20% in the same study. Gallbladder dyskinesia, a motility disorder of the gallbladder which reduces the rate of bile flow, has also been found in thiamine deficiency.

Malnutrition Induced Malnutrition

Together, these factors no doubt contribute to the phenomena of “malnutrition induced malnutrition”, a term coined by researchers to describe how thiamine deficiency can lead to all other nutrient deficiencies across the board. In other words, a chronic thiamine deficiency can indirectly produce an inability to digest and absorb foods, and therefore produce a deficiency in most of the other vitamins and minerals. In fact, this is indeed something I see frequently. And sadly, as thiamine is notoriously difficult to identify through ordinary testing methods, it is mostly missed by doctors and nutritionists. To summarize, B1 is necessary in the gut for:

  • Stomach acid secretion and gastric emptying
  • Pancreatic digestive enzyme secretion
  • Intestinal brush border enzymes
  • Intestinal contractions and motility
  • Vagal nerve function

Based on the above, is it any wonder why thiamine repletion can radically transform digestion? I have seen many cases where thiamine restores gut motility. Individuals who have been diagnosed with SIBO and/or IBS and are unable to pass a bowel movement for weeks at a time, begin having regular bowel movements and no longer require digestive aids after addressing their thiamine deficiency. In fact, the ability of thiamine to address these issues has been known for a long time in Japan.

TTFD and Gut Motility

While there are many formulations of thiamine for supplementation, the form of thiamine shown to be superior in several studies is called thiamine tetrahydrofurfuryl disulfide or TTFD for short. One study investigated the effect of TTFD on the jejunal loop of non-anesthetized and anesthetized dogs. They showed that intravenous administration induced a slight increase in tone and a “remarkable increase” in the amplitude of rhythmic contractions for twenty minutes. Furthermore, TTFD applied topically inside lumen of the intestine also elicited excitation.

Another study performed on isolated guinea pig intestines provided similar results, where the authors concluded that the action of TTFD was specifically through acting on the enteric neurons rather than smooth muscle cells. Along with TTFD, other derivatives have also been shown to influence gut motility. One study in rats showed an increase in intestinal contractions for all forms of thiamine including thiamine hydrochloride (thiamine HCL), S-Benzoyl thiamine disulphide (BTDS -a formulation that is  somewhat similar to benfotiamine), TTFD, and thiamine diphosphate (TPD). A separate study in white rats also found most thiamine derivatives to be effective within minutes.

Most interestingly, in another study, this time using mice, the effects of thiamine derivatives on artificially induced constipation by atropine and papaverine was analyzed. The researchers tested whether several thiamine derivatives could counteract the constipation including thiamine pyrophosphate (TPP), in addition to the HCL, TTFD and BTDS forms. Of all the forms of thiamine tested, TTFD was the ONLY one which could increase gut motility. Furthermore, they ALSO showed that TTFD did not increase motility in the non-treatment group (non-poisoned with atropine). This indicated that TTFD did not increase motility indiscriminately, but only when motility was dysfunctional. Finally, severe constipation and gastroparesis identified in patients with post-gastrectomy thiamine deficiency, was alleviated within a few weeks after a treatment that included three days of IV TTFD at 100mg followed by a daily dose of 75mg oral TTFD. Other symptoms also improved, including lower limb polyneuropathy.

To learn more about how thiamine affects gut health:

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Photo by Johannes Krupinski on Unsplash.

This article was first published on HM on June 1, 2020. 

New Developments in High-Dose Thiamine: The Legacy of Antonio Costantini

21565 views

In partnership with his colleagues, the Italian doctor Antonio Costantini pioneered the use of high-dose thiamine for treating a range of neurological and inflammatory conditions, including Parkinson’s disease (and here), multiple sclerosis, fibromyalgia, inflammatory bowel disease, and chronic cluster headaches.

Sadly, in 2020, Dr. Costantini contracted COVID-19 and died. While his work is finished, his legacy of exploring the therapeutic benefits of high-dose thiamine endures. In the past year, several important studies on high-dose thiamine have been released. This review briefly describes two of these studies and several related resources.

High-Dose Thiamine for IBD Fatigue

In the January 2021 issue of Alimentary Pharmacology & Therapeutics, Palle Bager and colleagues published a randomized controlled trial examining whether oral high-dose thiamine helped relieve fatigue in patients with quiescent inflammatory bowel disease (IBD) and severe chronic fatigue. Following a regimen adapted from Costantini’s earlier pilot study and other Costantini studies, the patients in Bager’s trial received 600 to 1,800 mg of oral thiamine hydrochloride daily, based on weight and gender. The 40 patients in the study were randomized to either receive high-dose thiamine or a placebo for four weeks. Following a four-week washout period, the control and treatment groups switched for another four weeks of treatment/placebo, so that everyone in the study received both high-dose thiamine and a placebo. The trial found that high-dose thiamine produced large reductions in self-reported fatigue on the validated IBD fatigue scale that were both clinically and statistically significant. No statistically significant relationship was observed between the impact of high-dose thiamine and patients’ baseline thiamine deficiency status.

This study is significant for its use of a very rigorous evaluation method: a double-blind cross-over randomized controlled trial. Using this gold standard evaluation method, Bager and colleagues largely confirmed the findings of Costantini’s earlier pilot study. While the Bager study focused only on people with IBD, it provides reason to be optimistic that high-dose thiamine may be helpful for the other populations studied by Costantini and possibly for people with other neurological and inflammatory conditions.

Bager and colleagues suggest that the impact of thiamine in reducing fatigue among patients with IBD and chronic fatigue may be related to problems the patients experience with the active transport mechanism for thiamine:

While the effect of high-dose oral thiamine was highly significant in our study, its exact mechanisms still need to be explored and investigated. The theory of a dysfunction in thiamine transport from blood to mitochondria remains a plausible explanation. The participants in our study were exposed to high doses of thiamine which induces passive diffusion that will add thiamine to the cells and the mitochondria. Consequently, the carbohydrate metabolism can normalise, and a reduction of fatigue is likely to follow.

In a Letter to the Editor of Alimentary Pharmacology & Therapeutics, I urged consideration of an alternative hypothesis, grounded in thiamine’s property as a carbonic anhydrase inhibitor:

The inhibition of carbonic anhydrase isoenzymes by high-dose thiamine and the resulting production of carbon dioxide could lead to reductions in fatigue and other symptomatic improvement through one or more of four potential pathways: (a) by reducing intracranial hypertension and/or ventral brainstem compression; (b) by increasing blood flow to the brain; (c) by facilitating aerobic cellular respiration and lactate clearance through the Bohr effect; or (d) by dampening the pro-inflammatory Th-17 pathway, again through the Bohr effect, potentially mediated by reductions in hypoxia-inducible factor 1.

More background on my hypotheses on the potential mechanisms for the impact of high-dose thiamine, with full citations, may be found here. The authors’ thoughtful reply to my letter may be found here.

High-Dose Thiamine for COVID-19

Another important recent study on high-dose thiamine has been released on a preprint server and is currently under consideration at the journal Critical Care. The study found that administration of high-dose thiamine to 83 patients in Saudi Arabia who were critically ill with COVID-19 was associated with a 55% reduction in 30-day ICU mortality and a 51% reduction in in-hospital mortality, as well as a reduction of 81% in the incidence of thrombosis during their ICU stay. The patients received a median of 100 mg of thiamine (presumably intravenously) for a median of 7 days.

Unlike the Bager study, the COVID-19 study by Al Sulaiman and colleagues was a retrospective study using a case matching approach, rather than a prospective study using random assignment. The authors matched the patients treated with high-dose thiamine to other critically ill COVID-19 patients using propensity scores based on baseline characteristics and controlling for the use of systemic corticosteroids. Based on correspondence with the authors, I understand that the patients’ baseline thiamine levels were not measured and thus unavailable as a matching variable.

This study is significant for providing evidence of the potential of high-dose thiamine to help treat critically ill patients with COVID-19. As I noted in an earlier Hormones Matter blog post, a prior study had found that high-dose thiamine damped down the pro-inflammatory th-17 pathway associated with the COVID-19 cytokine storm, but that study did not involve the treatment of actual COVID-19 patients.  Outcome data from the Front Line COVID-19 Critical Care Alliance suggests that the combined use of Methylprednisolone, Ascorbic Acid (Vitamin C), Thiamine and Heparin  (the so-called MATH+ protocol) may be helpful for COVID-19, but those data do not isolate the impact of high-dose thiamine and do not compare outcomes for treated households to those of a comparison group.

A randomized controlled trial is needed to verify the results found by Al Sulaiman and colleagues and assess whether high-dose thiamine can reduce mortality from COVID-19 among critically ill patients. It would also be valuable to rigorously evaluate whether oral high-dose thiamine could help early stage COVID-19 outpatients avoid hospitalization by reducing the incidence of the COVID-19 cytokine storm. This could help reduce the burdens of hospitals in India, Brazil, and other countries with high COVID-19 caseloads.

Future Directions

I am hopeful that additional rigorous research will be conducted to assess the potential of high-dose thiamine to treat a range of neurological and inflammatory conditions. It is hard to imagine a better tribute to Costantini’s work than a series of additional randomized controlled trials evaluating whether the observations he made in his pilot and case studies hold up when tested with larger samples using rigorous methods.

In addition to the conditions studied by Costantini, I would also encourage research into whether high-dose thiamine could be helpful for people with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) and the neurological complications of Ehlers-Danlos Syndrome (EDS) (such as those experienced by my daughter). In this Medium post (more technical discussion) and Health Rising post (less technical discussion), I explain why I think these populations could benefit from high-dose thiamine.

More recently, I documented the retrospective self-reported outcomes for 55 individuals with ME/CFS, EDS or Fibromyalgia who reported taking 200 mg of more daily of high-dose thiamine. Nearly two-thirds of the participants in this retrospective survey reported large benefits, most commonly in reducing fatigue, post-exertional malaise, and brain fog.  Interestingly, benefits were reported across a range of doses, including doses below those used by Costantini and Bager. Several study participants described high-dose thiamine as a game-changer that brought them substantial relief. The study has many limitations. For example, it was a small non-representative sample and based on self-reports only, but it is consistent with the potential of high-dose thiamine to provide large therapeutic benefits. I am hopeful it will help make the case for conducting more rigorous research in the future.

To the extent that Long COVID is similar to ME/CFS, I would also encourage the study of high-dose thiamine for people with this debilitating condition.

We Need Your Help

More people than ever are reading Hormones Matter, a testament to the need for independent voices in health and medicine. We are not funded and accept limited advertising. Unlike many health sites, we don’t force you to purchase a subscription. We believe health information should be open to all. If you read Hormones Matter, like it, please help support it. Contribute now.

Yes, I would like to support Hormones Matter. 

Image by AJS1 from Pixabay.

This article was published originally on June 10, 2021.