February 2015 - Page 2

Antibiotics during Pregnancy: Finally Pharmacokinetic Research

2810 views

A common refrain of mine is the lack of drug testing in women, especially pregnant women and relative to the enormous hormone changes women experience across a cycle, across pregnancy or postpartum and frankly across the lifespan. Hormonally, a 16 year old is not the same as a 45 year old. A woman’s biochemistry is not the same early in her cycle as it is late in her cycle. Nor is it the same when she is on oral contraceptives or hormone replacement therapies compared to when she is not and most especially, the pregnant woman’s biochemistry is hugely different than that of a non-pregnant woman. And yet, despite the lack of testing, lack of data, and limited understanding about how medications work relative to a woman’s hormonal state, women, pregnant and non-pregnant alike, are routinely prescribed medications for which we have a very poor understanding of the basic pharmacokinetics (how a drug travels through the body) or pharmacodynamics (what it does and how it works).

Ever so slowly, this may be changing. A group of researchers from the University Chicago, recently published a study on the Influence of Body Weight, Ethnicity, Oral Contraceptives and Pregnancy on the Pharmacokinetics of Azithromycin in Women of Childbearing Age. Though the study was small with only 53 pregnant women and 25 non-pregnant women, it represents one of the few published pharmacokinetic studies done on a drug routinely prescribed to pregnant women that evaluates hormone state.

Azithromycin: the Most Common Antibiotic Prescribed During Pregnancy

Azithromycin, more commonly known as Zithromax, Azithrocin, Z-Pack or ZMax, is the most frequently prescribed antibiotic for a range of bacterial infections of the ears, skin, throat.  It is believed to be safe during pregnancy, despite having a pregnancy category rating B (a designation given a medication that has not been tested in human pregnancy but appears to be safe in animal studies). Some research shows that Azithromycin appears to have no more adverse reactions than other antibiotics, but whether it is truly safe, whether pregnant pharmacokinetics are different than non-pregnant or how they are different had never been determined. The University of Chicago study demonstrated what many have always suspected:

  • pregnant women metabolize medications differently (more slowly) than non-pregnant women
  • oral contraceptives slow drug metabolism
  • and interestingly enough, African American women show different pharmacokinetic patterns than Caucasian, Hispanic, Pacific Islander or Asian women

Pharmacokinetics: The Basics of Drug Disposition

The disposition of a drug (how it travels through the body), is affected by a number of physiological variables including plasma volume (greater when pregnant, lower when dehydrated), protein binding (fat soluble drugs travel through the system bound and protected from metabolism-preparation for excretion- by carrier proteins), liver and kidney function (our waste removal systems). Any alteration to these variables affects how long a drug stays in the body, how much of the drug is available to exert its effects on the tissues or organs, and how effectively it is cleared from the system. Determining the disposition of the drug- the pharmacokinetics- is very important for drug dosing and ultimately, safety.  Every one of those drug disposition variables is affected by the hormone changes of pregnancy, postpartum (menstruation, menopause, oral contraceptives, HRT, etc.).

In the case of Azithromycin, pregnancy significantly slowed metabolism and clearance of the drug in pregnant Caucasian, Hispanic, Pacific Islander and Asian women, but not apparently in African American women or women not taking oral contraceptives. Translated, this means that pregnant Caucasian, Hispanic, Pacific Islander and Asian women were exposed to more drug, for a longer period of time, than were African American women. Ditto for women taking oral contraceptives versus those who were not taking oral contraceptives.

The researchers did not investigate whether hormonally-related changes in immune function interacted with the pharmacodynamics of the drug–rendered it more or less clinically effective. Nor did they evaluate whether or how other medications may have influenced drug disposition. As an aside, women in the pregnant group were taking more medications, in addition to the antibiotic in question, than the non-pregnant group.

What this research does show, however, is that hormones, or at least ‘hormone state’ affects drug disposition significantly. Additional studies are needed to determine how and if more customized dosing is required in pregnant and non-pregnant women alike.

This article was posted previously in September 2012.

Fluoroquinolone Antibiotic Dangers: Why Didn’t They Tell Me?

9073 views

Hundreds of articles about the harmful effects of fluoroquinolone antibiotics (Cipro/ciprofloxacin, Levaquin/levofloxacin, Avelox/moxifloxacin and Floxin/ofloxacin) have been published in medical and scientific journals, yet most of the articles have been ignored by the medical community and downplayed by the FDA. I can only surmise that the ignorance around the dangers of fluoroquinolones is because they are used as antibiotics and antibiotics are “supposed” to be safe and only damage bacteria, while leaving human cells unscathed. Or maybe it is because of the constant repetition of the baseless statement that fluoroquinolones have an “excellent record of safety and tolerance;” a statement that is only true if delayed reactions, tolerance thresholds and epigenetic effects are not taken into consideration.

Regardless of the motivations of those who are ignoring how destructive fluoroquinolones are, valuable information about the safety (or rather, the dangers) of fluoroquinolones as a class of drugs, have been ignored. Warnings about the toxicity of fluoroquinolones have been noted in journal article after journal article, yet they are still some of the most popular antibiotics prescribed.

Caution, prudence and thoughtfulness should be exercised when prescribing drugs that are as dangerous and destructive as fluoroquinolones. Fluoroquinolones are chemo drugs that are being mis-prescribed as antibiotics. Before filling a prescription for a fluoroquinolone to treat a sinus infection, or to use prophylactically for traveler’s diarrhea, or putting in your child’s ear to treat an ear infection, I encourage you to note the cellular destruction done by fluoroquinolones. Neither the FDA nor the average doctor is properly warning patients about the dangers of fluoroquinolones. Unfortunately, it is up to patients to inform themselves and gain proper warnings about the consequences of these dangerous drugs.

Fluoroquinolones Damage DNA

Back in 1992, when fluoroquinolones were first gaining popularity, Scientists raised concerns about their safety in an article published by the Proceedings of the National Academy of Sciences of the United States:

“the interaction (of fluoroquinolones) with DNA is still of great concern because of the possible long-term genotoxicity of quinolone compounds, which are increasingly adopted as first-choice antibiotics for the treatment of many infections, and because it addresses the real mechanism of action of this class of molecules.”

Fluoroquinolones are topoisomerase interrupters, meaning that their mechanism of action is described as, “The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination.” (Cipro warning label).

Very little, if any, concern over the possible genotoxic effects of fluoroquinolones were expressed to the public as they gained popularity and uses were expanded in the early 1990s. The warnings and concerns expressed by the scientists quoted were ignored.

It is noted in Molecular Pharmacology, “Delayed Cytotocicity and Cleavage of Mitochondrial DNA in Ciprofloxacin Treated Mammalian Cells” that fluoroquinolones “cause a selective loss of mitochondrial DNA (mtDNA)” and “The loss in mtDNA was associated with a delayed loss in mitochondrial function.” Additionally, it is stated that “ciprofloxacin induces reversible double-stranded breaks in nuclear DNA.” Studies have shown that both mitochondrial and nuclear DNA is adversely affected by fluoroquinolones, yet those studies have not gained traction in the medical community and have effectively been ignored.

The intergenerational effects of depleting DNA with fluoroquinolones is unknown at this time (I surmise that this is because these studies have been ignored, intergenerational studies are difficult to do, and funding for them is hard to come by). However, it is known that, “a number of human mitochondrial genetic diseases that are clinically discreet are being diagnosed at unexpected rates” (source). Additionally, in an article published in Nature in 2013 entitled, “Topoisomerases facilitate transcription of long genes linked to autism” it was noted that, “Our data suggest that chemicals or genetic mutations that impair topoisomerases, and possibly other components of the transcription elongation machinery that interface with topoisomerases, have the potential to profoundly affect the expression of long ASD (autism spectrum disorder) candidate genes.” Fluoroquinolones are topoisomerase interrupting chemicals.

Thus far, neither the increase in mitochondrial genetic diseases nor the link between topoisomerase interrupting drugs and autism have been acknowledged by the medical community, the FDA or the general public.

Fluoroquinolones Damage Mitochondria

The deleterious effects of fluoroquinolones on mitochondria have been noted repeatedly in journal articles, and even by the FDA.

In Science Translational Medicine, “Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells,” it is noted that bactericidal antibiotics, including ciprofloxacin, a fluoroquinolone, “damage mammalian tissues by triggering mitochondrial release of reactive oxygen species (ROS).” Even the FDA acknowledges that fluoroquinolones cause mitochondrial damage. In their April 27, 2013 Pharmacovigilance Review, “Disabling Peripheral Neuropathy Associated with Systemic Fluoroquinolone Exposure,” the FDA notes that the mechanism for action through which fluoroquinolones induce peripheral neuropathy is mitochondrial toxicity. The report says:

“Ciprofloxacin has been found to affect mammalian topoisomerase II, especially in mitochondria. In vitro studies in drug-treated mammalian cells found that nalidixic acid and ciprofloxacin cause a loss of mitochondrial DNA (mtDNA), resulting in a decrease of mitochondrial respiration and an arrest in cell growth. Further analysis found protein-linked double-stranded DNA breaks in the mtDNA from ciprofloxacin-treated cells, suggesting that ciprofloxacin was targeting topoisomerase II activity in the mitochondria.”

Fluoroquinolones are very, very bad for mitochondria. As the engines of our cells, healthy mitochondria are very necessary for healthy cells. Mitochondrial dysfunction is connected with many chronic diseases, including autismCFS/MEfibromyalgiaAlzheimer’s DiseaseParkinson’s Disease,multiple sclerosis, etc.

Fluoroquinolones Alter Neurons

Fluoroquinolones downgrade GABA-A receptors and can lead to a variety of CNS related symptoms of fluoroquinolone toxicity such as “dizziness, confusion, tremors, hallucinations, depression, and, rarely, psychotic reactions have progressed to suicidal ideations/thoughts and self-injurious behavior such as attempted or completed suicide,” as well as “nervousness, agitation, insomnia, anxiety, nightmares or paranoia” (Cipro warning label).

It was concluded in an article in The Journal of Neurophysiology in 1991 that, “in the presence of an anti-inflammatory agent, the quinolone antibiotics decrease the affinity of GABAA receptors, the result being induction of epileptogenic neurotoxicities.”

GABA receptors
Copyright 2009 Pharmacy Weekly, Inc. Printed with permission.

An article in Pharmacology Weekly that was published in 2009 notes that fluoroquinolones “modulate the activity of the gamma-aminobutyric acid (GABA)-A receptor” leading to the CNS side-effects of fluoroquinolones that include “tremors, restlessness, anxiety, confusion, paranoia, insomnia, etc.” and that “the presence of an NSAID or NSAID metabolite can significantly augment this effect and result in an even greater inhibition of GABA-A receptor activity” and lead to seizures, in addition to the other CNS effects listed. But, in 2015, people still are not systematically warned about the possibility of fluoroquinolone induced “nervousness, agitation, insomnia, anxiety, nightmares or paranoia” and NSAIDs are still prescribed concurrently with fluoroquinolones, despite documentation that the combination of fluoroquinolones and NSAIDs downgrade important neurotransmitters.

Though the symptoms that arise when GABA-A receptors are downgraded are noted on the warning labels for fluoroquinolones, nowhere on the warning label does it say that these effects can be long-lasting, or even permanent.

Generally, the effects of fluoroquinolones on neurotransmitters are ignored, and ensuing anxiety, insomnia and psychiatric illnesses are assumed to have nothing to do with the antibiotics that were prescribed for a sinus or urinary tract infection. The research and the warnings, have been ignored.

Fluoroquinolones Damage Cells

In The Journal of Medical Microbiology it was noted that:

Dougherty & Saukkonen (1985) showed that inhibition of DNA synthesis by nalidixic acid, a DNA gyrase inhibitor, results in morphological changes consistent with a loss of membrane integrity and leakage of intracellular components. Similar results were presented by Wickens et al. (2000), who noticed a decrease of both membrane integrity and membrane potential after exposure of E. coli to CIP. One of the proposed explanations of this finding is that, as a result of processes induced by inhibition of DNA replication, cells lose their capacity to synthesize necessary components and to maintain the proper membrane structure (Dougherty & Saukkonen, 1985).”

Naladixic acid is the root component of all fluoroquinolones.

In case it needs to be said, cellular membrane integrity and keeping intracellular components inside cells, are important. It is important for cells as a whole, and for organelles within cells such as mitochondria. As the importance of the microbiome is being uncovered, the importance of the bacteria in our guts maintaining cellular integrity is slowly being realized as well.

Fluoroquinolones are Dangerous Drugs

The FDA warning label for Cipro/ciprofloxacin is 43 pages long. The serious and severe adverse effects listed on the warning label are due to the cellular destruction done by Cipro. Other fluoroquinolones (Levaquin and Avelox are popular) have similar safety/danger profiles.

Though no antibiotics are without consequence, the cellular destruction done by fluoroquinolones makes them far more dangerous than other antibiotics. Fluoroquinolones should be categorized as chemo drugs along with all other topoisomerase interrupters. Please be wary and cautious with fluoroquinolones, and don’t use them unless it is absolutely necessary.

Information about Fluoroquinolone Toxicity

Information about the author, and adverse reactions to fluoroquinolone antibiotics (Cipro/ciprofloxacin, Levaquin/levofloxacin, Avelox/moxifloxacin and Floxin/ofloxacin) can be found on Lisa Bloomquist’s site, www.floxiehope.com.

Participate in Research

Hormones MatterTM is conducting research on the side effects and adverse events associated with the fluoroquinolone antibiotics, Cipro, Levaquin, Avelox and others: The Fluoroquinolone Antibiotics Side Effects Study. The study is anonymous, takes 20-30 minutes to complete and is open to anyone who has used a fluoroquinolone antibiotic. Please complete the study and help us understand the scope of fluoroquinolone reactions.

Hormones MatterTM conducts other crowdsourced surveys on medication reactions. To take one of our other surveys, click here.

To sign up for our newsletter and receive weekly updates on the latest research news, click here.

What Else Can I Do To Help?

Hormones MatterTM is completely unfunded at this juncture and we rely entirely on crowdsourcing and volunteers to conduct the research and produce quality health education materials for the public. If you’d like help us improve healthcare with better data, get involved. Become an advocate, spread the word about our site, our research and our mission. Suggest a study. Share a study. Join our team. Write for us. Partner with us. Help us grow.

To support Hormones Matter and our research projects – Crowdfund Us.

BPA and Other Gender Bending Plastics

5132 views

An oft repeated theme in this journal is that measurement matters. From the basic concept that one cannot manage what is not measured to the more specific notion that research protocols in the lab should attempt to mimic real life as much as reasonably possible, we believe measurement is critical. In matters of health and hormones where complex systems with a myriad of ever-changing variables are the norm, this is difficult at best. Sometimes, however, the simple act of measuring these variables opens a world of insight. This is the case with BPA and other estrogenic plastics.

BPA and Estrogens

Bisphenol-A (BPA), the estrogenic activator leaching sperm from our men and damaging the ovaries of women came to the world’s attention several years ago after a vocal and strident outcry from moms. The FDA subsequently remitted, prohibiting BPA from baby bottles and sippy cups and a slew of newer ‘safer’ BPA-Free plastic products emerged, but are they really safer? Maybe not.

Simulating Real Life Usage: Measurement Matters

Until recently, no one had measured the estrogenic activity of the other compounds used to plasticize our food containers. Nor had anyone measured these compounds under real-world stressors, such as UV-radiation (sunlight), microwave radiation or in the dishwasher or with different types of solvent (to represent the food/drinks contained by these plastics). Indeed, as is often the case, we were lulled into a false sense of safety.  We believed that since BPA was removed from plastics, the endocrine disruptors were also removed, when in fact the other compounds had simply not been measured.

As one might expect, once those tests were conducted, researchers found that most plastic products on the market today release chemicals that are estrogenic – even those marketed as BPA-Free. Baby bottles, where much of the BPA outcry began, can leech as many as 100 different chemicals especially when exposed to real-life stressors, sunlight, microwaves and dishwashers, all estrogenic in nature.

Sunlight, in particular, was especially adept at maximizing the release of estrogenic chemicals into the solvent. Who hasn’t left their water bottle in the car? And when the plastics were tested in both polar and non-polar solvents (most foodstuffs/drinks are a combination of both), the majority showed reliably detectable estrogenic activity.

What to Do With All of These Estrogens

Not to worry, according to the authors of the study, there are ways to create plastics that don’t elicit estrogenic activity and they don’t cost any more or require different manufacturing than those that do. It’s simply matter of choosing to utilize those plasticizers and associated chemicals instead of what we currently use. The question is whether major plastics manufacturers will pay heed to these warnings and make the switch. Did I mention the man-boobs and infertility from the extra estrogens?

The study:  Most Plastic Products Release Estrogenic Chemicals: A Potential Health Problem That Can Be Solved 

Postscript

The article above was published originally in October 2012. Over two years later, I am sad to say that not much has changed. Industry has repeatedly denied the safety issues with BPA and the other, presumably safe, BPA-free plastics. The current campaigns, much like those of the tobacco industry, proffer industry financed research as proof of product safety while discrediting any scientist who brings evidence to the contrary. It’s a common script followed by all chemical manufacturers; one that has yet to be successfully curtailed.